In Oriental medicine, roots of Polygala tenuifolia Willdenow have been known to be an important herb that exhibits sedative effects in insomnia, palpitation with anxiety, restlessness, and disorientation in humans. We previously reported that BT-11, extracted from those roots, improved scopolamine-induced amnesia in rats and inhibited acetylcholinesterase activities in vitro. Therefore, we proposed that BT-11 could remedy stress-induced memory deficits in rats. In this study, the stress-induced memory impairments in rats were significantly reversed almost to the control level by BT-11 treatment. To seek an active component of BT-11 that plays an important role in antipsychotic effects, we compared BT-11 with 3,4,5-trimethoxycinnamic acid (TMCA), which is a constituent of those root extracts. However, the effects of TMCA were less or were not consistent with those of BT-11 in some of tests. In particular, BT-11 reversed the stress-induced reduction of glucose utilization by [(18)fluorodeoxyglucose]FDG-PET and the levels of neural cell adhesion molecule (NCAM) in rat brains to the control levels, whereas TMCA did not. Therefore, BT-11 improved stress-induced memory impairments through increment of glucose utilization and total NCAM levels in rat brains. In conclusion, BT-11 may be strongly effective against stress-induced amnesia in rats, through the combined effects of TMCA and other active components of BT-11.
To develop a novel and effective drug that could enhance cognitive function and neuroprotection, we newly synthesized maltolyl p-coumarate by the esterification of maltol and p-coumaric acid. In the present study, we investigated whether maltolyl p-coumarate could improve cognitive decline in scopolamine-injected rats and in amyloid beta peptide(1-42)-infused rats. Maltolyl p-coumarate was found to attenuate cognitive deficits in both rat models using passive avoidance test and to reduce apoptotic cell death observed in the hippocampus of the amyloid beta peptide(1-42)-infused rats. We also examined the neuroprotective effects of maltolyl p-coumarate in vitro using SH-SY5Y cells. Cells were pretreated with maltolyl p-coumarate, before exposed to amyloid beta peptide(1-42), glutamate or H2O2. We found that maltolyl p-coumarate significantly decreased apoptotic cell death and reduced reactive oxygen species, cytochrome c release, and caspase 3 activation. Taking these in vitro and in vivo results together, our study suggests that maltolyl p-coumarate is a potentially effective candidate against Alzheimer's disease that is characterized by wide spread neuronal death and progressive decline of cognitive function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.