Silicone passive samplers have gained an increasing attention as single-phased, practical and robust samplers for monitoring of organic contaminants in the aquatic environment in recent years. However, analytical challenges arise in routine application during the extraction of analytes as silicone oligomers are co-extracted and interfere severely during chemical analyses (e.g. gas chromatographic techniques). In this study, we present a fast, practical pre-cleaning method for silicone passive samplers applying accelerated solvent extraction (ASE) for the removal of silicone oligomers prior to the water deployment (hexane/dichloromethane, 100 °C, 70 min). ASE was also shown to be a very fast (10 min) and efficient extraction method for non-polar contaminants (non-exposed PRC recoveries 66–101 %) sampled by the silicone membrane. For both applications, temperature, extraction time and the solvent used for ASE have been optimized. Purification of the ASE extract was carried out by silica gel and high-pressure liquid size exclusion chromatography (HPLC-SEC). The silicone oligomer content was checked by total reflection X-ray fluorescence spectroscopy (TXRF) in order to confirm the absence of the silicone oligomers prior to analysis of passive sampler extracts. The established method was applied on real silicone samplers from the North- and Baltic Sea and showed no matrix effects during analysis of organic pollutants. Internal laboratory standard recoveries were in the same range for laboratory, transport and exposed samplers (85–126 %).
The performance of a disc tube (DT) methodology, originally designed for reverse osmosis (RO) in desalination, and applied here for ultrafiltration (UF) and nanofiltration (NF) of dissolved organic matter (DOM) in a set of fresh (0ppt), brackish (10ppt) and saline (30ppt) waters at low (1 - 2mg/L), medium (5 - 6mg/L) and high (10-12mg/L) dissolved organic carbon (DOC) content is presented. The DT module allows for time efficient processing of large volumes of sample and can be operated with RO, NF and UF membranes. We examined the performance of a NF membrane with nominal molecular weight cut-off (MWCO) of 500 Da and UF membranes with MWCO of 1 kDa and 10 kDa. Throughout the experiments we monitored DOM in terms of DOC, UV-absorption coefficient ratios (E2/E3) and the specific UV-absorbance at 254 nm (SUVA254).Detailed protocols for operating the disc tube modules are proposed. The membranes can be efficiently cleaned to provide low carbon blanks (<0.2mg/L). Calibration confirmed separation of high and low molecular weight standards into the retentate and permeate fractions, respectively. DOC mass balance of fractionated DOM samples showed good recoveries (123% ±32% at 500 Da, 95% ±12% at 1 kDa and 99% ±
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.