In this work, we developed a new amperometric biosensor for glutamate detection using a typical method of glutamate oxidase (GlOx) immobilization via adsorption on silicalite particles. The disc platinum electrode (d = 0.4 mm) was used as the amperometric sensor. The procedure of biosensor preparation was optimized. The main parameters of modifying amperometric transducers with a silicalite layer were determined along with the procedure of GlOx adsorption on this layer. The biosensors based on GlOx adsorbed on silicalite demonstrated high sensitivity to glutamate. The linear range of detection was from 2.5 to 450 μM, and the limit of glutamate detection was 1 μM. It was shown that the proposed biosensors were characterized by good response reproducibility during hours of continuous work and operational stability for several days. The developed biosensors could be applied for determination of glutamate in real samples.
A possibility of efficient urease adsorption on silicalite for the purpose of biosensor creation was investigated. The procedure of urease adsorption on silicalite is notable for such advantages as simple and fast performance and non‐use of toxic or auxiliary compounds. Optimal conditions for modifying transducer surfaces with silicalite and subsequent urease adsorption on these surfaces were selected. The working parameters of the created biosensor were optimized. The developed biosensor with adsorbed urease was characterized by good intra‐reproducibility (RSD – 4.5 %), improved inter‐reproducibility (RSD of urea determination is 9 %) and operational stability (less than 10 % loss of activity after 10 days). Besides, the developed method for enzyme adsorption on silicalite was compared with the traditional methods of urease immobilization in biosensorics. Working conditions of the produced biosensor (pH and ionic strength) were shown to be close to those of the biosensor based on urease immobilized in GA vapor. For these reasons, it was concluded that the method of enzyme adsorption on silicalite is well‐suited for biosensor standardization aimed at its further manufacture.
A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors.
In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.