Molecular sexing revealed an unexpectedly strong female bias in the sex ratio of pre-breeding European Storm Petrels (Hydrobates pelagicus), attracted to playback of conspecific calls during their northwards migration past SW Europe. This bias was consistent across seven years, ranging from 80.8% to 89.7% female (mean annual sex ratio ± SD = 85.5% female ±4.1%). The sex ratio did not differ significantly from unity (i.e., 50% female) among (i) Storm Petrel chicks at a breeding colony in NW France, (ii) adults found dead on beaches in Southern Portugal, (iii) breeding birds attending nest burrows in the UK, captured by hand, and (iv) adults captured near a breeding colony in the UK using copies of the same sound recordings as used in Southern Europe, indicating that females are not inherently more strongly attracted to playback calls than males. A morphological discriminant function analysis failed to provide a good separation of the sexes, showing the importance of molecular sexing for this species. We found no sex difference in the seasonal or nocturnal timing of migration past Southern Europe, but there was a significant tendency for birds to be caught in sex-specific aggregations. The preponderance of females captured in Southern Europe suggests that the sexes may differ in migration route or in their colony-prospecting behaviour during migration, at sites far away from their natal colonies. Such differences in migration behaviour between males and females are poorly understood but have implications for the vulnerability of seabirds to pollution and environmental change at sea during the non-breeding season.
During 2021-22 High Pathogenicity Avian Influenza (HPAI) killed thousands of wild birds across Europe and North America, suggesting a change in infection dynamics and a shift to new hosts, including seabirds. Northern Gannets (Morus bassanus) appeared especially severely impacted, but limited understanding of how the virus spread across the metapopulation, or the demographic consequences of mass mortality limit our understanding of its severity. Accordingly, we collate information on HPAIV outbreaks across most North Atlantic gannet colonies and for the largest colony (Bass Rock, UK), provide impacts on population size, breeding success, adult survival, and preliminary results on serology. Unusually high numbers of dead gannets were first noted in Iceland during April 2022. Outbreaks in May occurred in many Scottish colonies, followed by colonies in Canada, Germany and Norway. By the end of June, outbreaks had occurred in five Canadian colonies and in the Channel Islands. Outbreaks in 12 UK and Ireland colonies appeared to follow a clockwise pattern with the last infected colonies recorded in late August/September. Unusually high mortality was recorded at 40 colonies (75% of global total colonies). Dead birds testing positive for HPAIV H5N1 were associated with 58% of these colonies. At Bass Rock, the number of occupied sites decreased by at least 71%, breeding success declined by ~66% compared to the long-term UK mean and adult survival between 2021 and 2022 was 42% lower than the preceding 10-year average. Serological investigation detected antibodies specific to H5 in apparently healthy birds indicating that some gannets recover from HPAIV infection. Further, most of these recovered birds had black irises, suggestive of a phenotypic indicator of previous infection. Untangling the impacts of HPAIV infection from other key pressures faced by seabirds is key to establishing effective conservation strategies for threatened seabird populations, HPAIV being a novel and pandemic threat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.