In this paper we provide a mathematical reconstruction of what might have been Gauss' own derivation of the linking number of 1833, providing also an alternative, explicit proof of its modern interpretation in terms of degree, signed crossings and intersection number. The reconstruction presented here is entirely based on an accurate study of Gauss' own work on terrestrial magnetism. A brief discussion of a possibly independent derivation made by Maxwell in 1867 completes this reconstruction. Since the linking number interpretations in terms of degree, signed crossings and intersection index play such an important role in modern mathematical physics, we offer a direct proof of their equivalence. Explicit examples of its interpretation in terms of oriented area are also provided.
The proposal and study of dependent prior processes has been a major research focus in the recent Bayesian nonparametric literature. In this paper, we introduce a flexible class of dependent nonparametric priors, investigate their properties and derive a suitable sampling scheme which allows their concrete implementation. The proposed class is obtained by normalizing dependent completely random measures, where the dependence arises by virtue of a suitable construction of the Poisson random measures underlying the completely random measures. We first provide general distributional results for the whole class of dependent completely random measures and then we specialize them to two specific priors, which represent the natural candidates for concrete implementation due to their analytic tractability: the bivariate Dirichlet and normalized σ -stable processes. Our analytical results, and in particular the partially exchangeable partition probability function, form also the basis for the determination of a Markov Chain Monte Carlo algorithm for drawing posterior inferences, which reduces to the well-known Blackwell-MacQueen Pólya urn scheme in the univariate case. Such an algorithm can be used for density estimation and for analyzing the clustering structure of the data and is illustrated through a real two-sample dataset example.
Summary For the most popular discrete nonparametric models, beyond the Dirichlet process, the prior guess at the shape of the data-generating distribution, also known as the base measure, is assumed to be diffuse. Such a specification greatly simplifies the derivation of analytical results, allowing for a straightforward implementation of Bayesian nonparametric inferential procedures. However, in several applied problems the available prior information leads naturally to the incorporation of an atom into the base measure, and then the Dirichlet process is essentially the only tractable choice for the prior. In this paper we fill this gap by considering the Pitman–Yor process with an atom in its base measure. We derive computable expressions for the distribution of the induced random partitions and for the predictive distributions. These findings allow us to devise an effective generalized Pólya urn Gibbs sampler. Applications to density estimation, clustering and curve estimation, with both simulated and real data, serve as an illustration of our results and allow comparisons with existing methodology. In particular, we tackle a functional data analysis problem concerning basal body temperature curves.
Summary. The problem of estimating discovery probabilities originated in the context of statistical ecology, and in recent years it has become popular due to its frequent appearance in challenging applications arising in genetics, bioinformatics, linguistics, designs of experiments, machine learning, etc. A full range of statistical approaches, parametric and nonparametric as well as frequentist and Bayesian, has been proposed for estimating discovery probabilities. In this article, we investigate the relationships between the celebrated Good-Turing approach, which is a frequentist nonparametric approach developed in the 1940s, and a Bayesian nonparametric approach recently introduced in the literature. Specifically, under the assumption of a two parameter Poisson-Dirichlet prior, we show that Bayesian nonparametric estimators of discovery probabilities are asymptotically equivalent, for a large sample size, to suitably smoothed Good-Turing estimators. As a by-product of this result, we introduce and investigate a methodology for deriving exact and asymptotic credible intervals to be associated with the Bayesian nonparametric estimators of discovery probabilities. The proposed methodology is illustrated through a comprehensive simulation study and the analysis of Expressed Sequence Tags data generated by sequencing a benchmark complementary DNA library.
Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo marginal methods typically yield point estimates in the form of posterior expectations. Though very useful and easy to implement in a variety of statistical problems, these methods may suffer from some limitations if used to estimate non-linear functionals of the posterior distribution. The main goal of the present paper is to develop a novel methodology that extends a well-established marginal procedure designed for hazard mixture models, in order to draw approximate inference on survival functions that is not limited to the posterior mean but includes, as remarkable examples, credible intervals and median survival time. Our approach relies on a characterization of the posterior moments that, in turn, is used to approximate the posterior distribution by means of a technique based on Jacobi polynomials. The inferential performance of our methodology is analyzed by means of an extensive study of simulated data and real data consisting of leukemia remission times. Although tailored to the survival analysis context, the procedure we introduce can be adapted to a range of other models for which moments of the posterior distribution can be estimated.Comment: 27 pages, 5 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.