The neutralization of NaOH with CO2 in a continuously operated airlift reactor with gas flow rates up to 10 NL min−1 and gas phase recycle was investigated. Neutralization experiments were performed at 25 °C and the amount of absorbed CO2, as well as the NaOH feed rate, were recorded. The reaction rate was calculated based on the two‐film theory and empirical equations for several parameters. The calculations of the volumetric mass transfer coefficient, the liquid phase circulation velocity, and the gas holdup were experimentally validated. The reaction rate and the process efficiency were modeled with a deviation of 5 %.
The utilization of real producer gases such as raw biogas or gasified wood for chemical looping hydrogen production implies the introduction of harmful contaminants into the process. Hydrogen sulfide represents one of the most challenging trace gases in the Reformer Steam Iron Cycle (RESC). The aim of the present work was an in-depth investigation of steam reforming with pure methane and synthetic biogas contaminated with selective concentrations of 1, 5 and 10 ppm of hydrogen sulfide. To validate the experimental data, the fixed-bed reactor system was modelled as one dimensional pseudo homogeneous plug flow reactor by an adapted Maxted model. In a preliminary thermodynamic study, the dry equilibrium composition was determined within a deviation of 4% for SMR and 2% for synthetic biogas reforming compared to the experimental results. The impact of hydrogen sulfide on the reactivity of the catalyst was characterized by the residual methane conversion. The deactivation rate and extent is directly proportional to the concentration of H2S, as higher hydrogen sulfide concentrations lead to a faster deactivation and lower residual methane conversion. A comparison of the methane conversion as a function of sulfur coverage between experimental and simulated data showed good agreement. The predicted results are within <10% deviation for SMR and synthetic biogas reforming, except for sulfur coverages between 0.6 and 0.8. The temperature in the catalyst bed was monitored throughout the deactivation process to gather additional information about the reaction behavior. It was possible to visualize the shift of the reforming reaction front towards the bottom of the reactor caused by catalyst deactivation. The impact of sulfur chemisorption on the morphology of the steam reformer catalyst was analyzed by SEM/EDS and BET techniques. SEM patterns clearly indicated the presence of sulfur as a sort of dust on the surface of the catalyst, which was confirmed by EDS analysis with a sulfur concentration of 0.04 wt%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.