The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1-4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-μl serum sample, the sensitivity and specificity values of the DENV1-4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-μl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction-positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.
The transatlantic slave trade was the largest forced migration in world history. However, the origins of the enslaved Africans and their admixture dynamics remain unclear. To investigate the demographic history of African-descendant Marron populations, we generated genome-wide data (4.3 million markers) from 107 individuals from three African-descendant populations in South America, as well as 124 individuals from six west African populations. Throughout the Americas, thousands of enslaved Africans managed to escape captivity and establish lasting communities, such as the Noir Marron. We find that this population has the highest proportion of African ancestry (∼98%) of any African-descendant population analyzed to date, presumably because of centuries of genetic isolation. By contrast, African-descendant populations in Brazil and Colombia harbor substantially more European and Native American ancestry as a result of their complex admixture histories. Using ancestry tract-length analysis, we detect different dates for the European admixture events in the African-Colombian (1749 CE; confidence interval [CI]: 1737-1764) and African-Brazilian (1796 CE; CI: 1789-1804) populations in our dataset, consistent with the historically attested earlier influx of Africans into Colombia. Furthermore, we find evidence for sex-specific admixture patterns, resulting from predominantly European paternal gene flow. Finally, we detect strong genetic links between the African-descendant populations and specific source populations in Africa on the basis of haplotype sharing patterns. Although the Noir Marron and African-Colombians show stronger affinities with African populations from the Bight of Benin and the Gold Coast, the African-Brazilian population from Rio de Janeiro has greater genetic affinity with Bantu-speaking populations from the Bight of Biafra and west central Africa.
Dengue fever is an increasing health problem in tropical and subtropical regions. During 2010 in Medellin, the younger population presented a particularly high dengue incidence rate. This study estimated dengue virus (DENV) transmission in schoolchildren (aged 5–19 years) in Medellin from 2010 to 2012. A longitudinal serological survey (IgG) and spatial analysis were conducted to determine the distribution of DENV seroprevalence. A total of 4,385 schoolchildren participated for at least one year. Dengue seroprevalence significantly increased during the studied period (53.8% to 64.6%; p < 0.001). A significantly higher seroconversion rate was observed in 2010-2011 (16.8%) compared to 2011-2012 (7.8%). Multivariate regression analysis showed that the main factor associated with the seroprevalence was the aging. Furthermore, in 2010, patients with high socioeconomic status presented a lower risk. Predominant multitypic and DENV4 monotypic antibody responses were demonstrated. Geostatistical analysis evidenced a temporal clustering distribution of DENV seroprevalence in 2010. Population density and Ae. aegypti House Index were significantly correlated with the observed pattern. This study revealed high DENV transmission in schoolchildren determined as “sentinel population.” High DENV risk was found in districts with combined poorly socioeconomic conditions and densest human and mosquito populations. These findings may allow to target population for effective prevention and vaccination campaigns.
This study compared the serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interferon gamma (IFN-gamma) in 78 Colombian patients, from two ethnic groups, with dengue virus infection. TNF-alpha levels were significantly higher in Afro-Colombians than in Mestizos and IL-6 levels were significantly higher in Mestizos than in Afro-Colombians, during the acute phase. IFN-gamma levels were similar in both ethnic groups. Significantly higher TNF-alpha levels were found in Afro-Colombians than in Mestizos in both dengue fever (DF) and dengue hemorrhagic fever (DHF). The IL-6 levels were higher in Mestizos than in Afro-Colombians among patients with DF, but levels of this cytokine were higher in Afro-Colombians than in Mestizos among patients with DHF. Levels of IFN-gamma were higher in patients with DHF than DF. Higher levels of these cytokines were observed in secondary infection. These results suggest that ethnicity may contribute to differences in immune responses to dengue infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.