BackgroundRates of resistance to macrolide antibiotics in Streptococcus pneumoniae are rising around the world due to the spread of mobile genetic elements harboring mef(E) and erm(B) genes and post-vaccine clonal expansion of strains that carry them.ResultsCharacterization of 592 clinical isolates collected in Arizona over a 10 year period shows 23.6% are macrolide resistant. The largest portion of the macrolide-resistant population, 52%, is dual mef(E)/erm(B)-positive. All dual-positive isolates are multidrug-resistant clonal lineages of Taiwan19F-14, mostly multilocus sequence type 320, carrying the recently described transposon Tn2010. The remainder of the macrolide resistant S. pneumoniae collection includes 31% mef(E)-positive, and 9% erm(B)-positive strains.ConclusionsThe dual-positive, multidrug-resistant S. pneumoniae clones have likely expanded by switching to non-vaccine serotypes after the heptavalent pneumococcal conjugate vaccine release, and their success limits therapy options. This upsurge could have a considerable clinical impact in Arizona.
Health care-acquired infections (HAIs) kill tens of thousands of people each year and add significantly to health care costs. Multidrug-resistant and epidemic strains are a large proportion of HAI agents, and multidrug-resistant strains of Klebsiella pneumoniae, a leading HAI agent, have caused an urgent public health crisis. In the health care environment, patient colonization by K. pneumoniae precedes infection, and transmission via colonization leads to outbreaks. Periodic patient screening for K. pneumoniae colonization has the potential to curb the number of HAIs. In this report, we describe the design and validation of KlebSeq, a highly informative screening tool that detects Klebsiella species and identifies clinically important strains and characteristics by using highly multiplexed amplicon sequencing without a live-culturing step. We demonstrate the utility of this tool on several complex specimen types, including urine, wound swabs and tissue, and several types of respiratory and fecal specimens, showing K. pneumoniae species and clonal group identification and antimicrobial resistance and virulence profiling, including capsule typing. Use of this amplicon sequencing tool to screen patients for Klebsiella carriage could inform health care staff of the risk of infection and outbreak potential. KlebSeq also serves as a model for next-generation molecular tools for public health and health care, as expansion of this tool can be used for several other HAI agents or applications.
Available methods for the diagnosis of coccidioidomycosis have significant shortcomings relative to accuracy and timeliness. We retrospectively and prospectively evaluated the diagnostic performance and reproducibility of a new cartridge-based real-time PCR assay for Coccidioides spp. directly in lower respiratory secretions and compared them to today's “gold standard,” fungal culture. The GeneSTAT Coccidioides assay uses a 106-bp target sequence repeated multiple times (∼60×) per genome, thus lowering the limit of detection (LOD) for extracted DNA to 10 genome equivalents/ml. A total of 332 prospective and retrospective individual patient specimens were tested. The retrospective samples consisted of 100 bronchoalveolar lavage or bronchial wash (BAL/BW) (51 positive and 49 negative by culture) specimens that had been collected previously and stored at −70°C. These samples were tested by the GeneSTAT Coccidioides assay across three clinical test sites. The sensitivity was 100%, and the specificity ranged between 93.8% and 100%. There was minimal variance in the percent agreement across the three sites, 95.6% to 100%. Additionally, a total of 232 fresh (prospective) deidentified BAL/BW specimens were tested across the three clinical sites, which included a number of specimens from Southern California to provide a diversity of isolates. Specimens were tested by fungal culture, with any isolates of Coccidioides, except for one, being confirmed by molecular means (AccuProbe). The sensitivity of the GeneSTAT Coccidioides assay across the three sites was 100% (4/4) for positive fresh specimens, and the overall specificity of the assay was 99.6% (227/228), ranging from 98.1% to 100%. In testing for cross-reactivity, the assay was 100% specific when screened against 47 different bacterial, viral, and fungal species.
Of 107 gram-negative isolates obtained from intensive care units examined for patterns of multiresistance to 16 antimicrobial agents, 54.2% were multiresistant, defined as resistant to three or more test antimicrobials. Ciprofloxacin had excellent activity against all isolates with 93.4% susceptibility. Ciprofloxacin also performed well on multiresistant isolates with 89.7% susceptibility, which included 42.2% inducible Enterobacteriaceae. All six multiresistant ciprofloxacin-resistant isolates were resistant to five or more of the tested antimicrobials (mean 9.0), including a highly resistant Proteus mirabilis urine isolate resistant to 14 of 16 agents. The only antimicrobial to which all of the ciprofloxacin-multi-resistant isolates were resistant, was ampicillin, indicating an absence of cross resistance. In addition, ciprofloxacin had excellent activity (100% susceptibility) against Enterobacter spp. and Klebsiella pneumoniae, two organisms frequently associated with nosocomial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.