Across chemical disciplines, an interest in developing artificial water splitting to O(2) and H(2), driven by sunlight, has been motivated by the need for practical and environmentally friendly power generation without the consumption of fossil fuels. The central issue in light-driven water splitting is the efficiency of the water oxidation, which in the best-known catalysts falls short of the desired level by approximately two orders of magnitude. Here, we show that it is possible to close that 'two orders of magnitude' gap with a rationally designed molecular catalyst [Ru(bda)(isoq)(2)] (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; isoq = isoquinoline). This speeds up the water oxidation to an unprecedentedly high reaction rate with a turnover frequency of >300 s(-1). This value is, for the first time, moderately comparable with the reaction rate of 100-400 s(-1) of the oxygen-evolving complex of photosystem II in vivo.
DFT calculations form the basis of a model capable of predicting the air stability of phosphines. The sensitivity of 18 primary phosphines is accounted for; the model also predicts the trend of increasing stability from phenylphosphine to triphenylphosphine. There is evidence that the radical cation SOMO energy for each corresponding phosphine may be key to its air stability/sensitivity.
Using the combinations of imidazole and dimethyl sulfoxide (DMSO) as axial ligands and 2,2'-bipyridine-6,6'-dicarboxylate (bda) as the equatorial ligand, we have synthesized six novel ruthenium complexes with noticeably different activity as water oxidation catalysts (WOCs). In four C(s) symmetric Ru(II)(κ(3)-bda)(DMSO)L(2) complexes L = imidazole (1), N-methylimidazole (2), 5-methylimidazole (3), and 5-bromo-N-methylimidazole (4). Additionally, in two C(2v) symmetric Ru(II)(κ(4)-bda)L(2) complexes L = 5-nitroimidazole (5) and 5-bromo-N-methylimidazole (6), that is, fully equivalent axial imidazoles. A detailed characterization of all complexes and the mechanistic investigation of the catalytic water oxidation have been carried out with a number of experimental techniques, that is, kinetics, electrochemistry and high resolution mass spectrometry (HR-MS), and density functional theory (DFT) calculations. We have observed the in situ formation of a Ru(II)-complex with the accessible seventh coordination position. The measured catalytic activities and kinetics of complex 1-6 revealed details about an important structure-activity relation: the connection between the nature of axial ligands in the combination and either the increase or decrease of the catalytic activity. In particular, an axial DMSO group substantially increases the turnover frequency of WOCs reported in the article, with the ruthenium-complex having one axial 5-bromo-N-methyl-imidazole and one axial DMSO (4), we have obtained a high initial turnover frequency of ∼180 s(-1). DFT modeling of the binuclear reaction pathway of the O-O bond formation in catalytic water oxidation further corroborated the concept of the mechanistic significance of the axial ligands and rationalized the experimentally observed difference in the activity of complexes with imidazole/DMSO and imidazole/imidazole combinations of axial ligands.
This work describes a fluorescent probe for following changes in the viscosity of the surrounding medium. The optical properties, fluorescence characteristics, and sensitivity to frictional forces with the surrounding medium are superior to the most commonly used molecular probe, namely dicyanovinyl julolidine. The photophysical properties of the target molecule have been recorded in a range of solvents under ambient conditions, over a wide temperature range, and as a function of applied pressure. The mechanism by which the probe responds to changes in local viscosity involves gyration of the mesophenylene ring and accompanying distortion of the dipyrrin framework, as indicated by molecular dynamics simulations. Indeed, temperature-dependence measurements have established that the activation energy is small when the solvent viscosity is relatively low, but there is a turnover to strong activation control at very high viscosity. A small but definite solvent dependence appears when the viscosity is varied by the application of high pressures and this can be traced to differences in the elasticity of the surroundings. Unusually for such fluorescent rotors, there is no indication that the excited state involves charge-transfer interactions. The rotor also responds to changes in the polarizability of the solvent, as induced by changes in applied pressure, and to the extent of polymerization of a monomer. The various experimental observations made at low viscosity are consistent with diffusive motion of the wave packet along the excited-state potential curve until finding a sink that strongly coupled to the highly distorted ground state.
This article describes the synthesis and characterization of several new difluoroboradiazaindacene (BODIPY) dyes functionalized at the central 8-position by a phenyliodo, phenylheptynoate or phenylheptynoic fragment and at the 3- or 3/5-position(s) by 4-dimethylaminophenylstyryl residue(s). Single-crystal structural determinations confirm the planarity of the dyes, while the absorption and fluorescence spectroscopic properties are highly sensitive to the state of protonation (or alkylation) of the terminal anilino donor group(s). Reversible color tuning from green to blue for absorption and from colorless (i.e., near-IR region) to red for fluorescence is obtained on successive addition of acid and base. The difunctionalized derivative is especially interesting in this respect and shows two well-resolved pK(a) values of 5.10 and 3.04 in acetonitrile. Addition of the first proton causes only small spectral changes and deactivates the molecule towards addition of the second proton. It is this latter step that accommodates the large change in absorption and emission properties, due to the reversible extinction of the intramolecular charge-transfer character inherent to this type of dye. The main focus of the work is the covalent anchoring of the dyes to inert, porous polyacrylate beads so as to form a solid-state sensor suitable for analysis of gases or flowing liquids. The final material is highly stable--its performance is undiminished after more than one year--and fully reversible over many cycles. The sensitivity is such that reactions can be followed by the naked eye and the detection limit is about 600 ppb for HCl and about 80 ppb for ammonia. Trace amounts of diphosgene can be detected, as can alkylating agents. The sensing action is indiscriminate and also operates when the beads are dispersed in aqueous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.