BackgroundCamelina (Camelina sativa L. Crantz) is a non-food oilseed crop which holds promise as an alternative biofuel energy resource. Its ability to grow in a variety of climatic and soil conditions and minimal requirements of agronomical inputs than other oilseed crops makes it economically viable for advanced biofuel production. We designed a study to investigate the effect of paclobutrazol [2RS, 3RS)-1-(4-Chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol] (PBZ), a popular plant growth regulator, on the seed and oil yield of Camelina sativa (cv. Celine).ResultsA field-based micro-trial setup was established in a randomized block design and the study was performed twice within a span of five months (October 2010 to February 2011) and five different PBZ treatments (Control: T0; 25 mg l-1: T1; 50 mg l-1: T2; 75 mg l-1: T3; 100 mg l-1: T4; 125 mg l-1: T5) were applied (soil application) at the time of initiation of flowering. PBZ at 100 mg l-1 concentration (T4) resulted in highest seed and oil yield by 80% and 15%, respectively. The seed yield increment was mainly due to enhanced number of siliques per plant when compared to control. The PBZ - treated plants displayed better photosynthetic leaf gas exchange characteristics, higher chlorophyll contents and possessed dark green leaves which were photosynthetically active for a longer period and facilitated higher photoassimilation.ConclusionWe report for the first time that application of optimized PBZ dose can be a potential strategy to achieve higher seed and oil yield from Camelina sativa that holds great promise as a biofuel crop in future.
Jatropha (Jatropha curcas) is a non-edible oil producing plant which is being advocated as an alternative biofuel energy resource. Its ability to grow in diverse soil conditions and minimal requirements of essential agronomical inputs compared with other oilseed crops makes it viable for cost-effective advanced biofuel production. We designed a study to investigate the effects of elevated carbon dioxide concentration ([CO(2)]) (550 ppm) on the growth, reproductive development, source-sink relationships, fruit and seed yield of J. curcas. We report, for the first time that elevated CO(2) significantly influences reproductive characteristics of Jatropha and improve its fruit and seed yields. Net photosynthetic rate of Jatropha was 50% higher in plants grown in elevated CO(2) compared with field and ambient CO(2) -grown plants. The study also revealed that elevated CO(2) atmosphere significantly increased female to male flower ratio, above ground biomass and carbon sequestration potential in Jatropha (24 kg carbon per tree) after 1 year. Our data demonstrate that J. curcas was able to sustain enhanced rate of photosynthesis in elevated CO(2) conditions as it had sufficient sink strength to balance the increased biomass yields. Our study also elucidates that the economically important traits including fruit and seed yield in elevated CO(2) conditions were significantly high in J. curcas that holds great promise as a potential biofuel tree species for the future high CO(2) world.
The present study describes the changes in lipid profile as well as fatty acid fluxes during seed development in Jatropha curcas L. Endosperm from 34, 37, and 40 days after anthesis (DAA), incubated with [(14)C]acetate, showed significant synthesis of phosphatidylcholine (PC) at seed maturation. The fatty acid methyl ester profile showed PC from 34 DAA was rich in palmitic acid (16:0), whereas PC from 37 and 40 DAA was rich in oleic acid (18:1n-9). Molecular species analysis of diacylglycerol (DAG) indicated DAG (16:0/18:2n-6) was in abundance at 34 DAA, whereas DAG (18:1n-9/18:2n-6) was significantly high at 40 DAA. Triacylglycerol (TAG) analysis revealed TAG (16:0/18:2n-6/16:0) was abundant at 34 DAA, whereas TAG (18:1n-9/18:2n-6/18:1n-9) formed the majority at 40 DAA. Expression of two types of diacylglycerol acyltransferases varied with seed maturation. These data demonstrate stage-specific distinct pools of PC and DAG synthesis during storage TAG accumulation in Jatropha seed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.