SBA-15 mesoporous silica has been functionalized with azidopropyl groups through both one-pot co-condensation and post-synthetic grafting. For both these methodologies, azidopropyltriethoxysilane was used to introduce the azidopropyl groups. The azidopropyl modified SBA-15 material synthesized by one-pot co-condensation had hexagonal crystallographic order, pore diameters up of 50 A, and the content of azidopropyl groups was found to be 1.3 mmol g À1 . The presence of the azidopropyl group was confirmed by multinuclear ( 13 C, 29 Si) solid state NMR and IR spectroscopy. Both these materials underwent very efficient Cu(I)-catalyzed azide alkyne ''click'' reaction (CuAAC) with a variety of alkynes. Nearly 85% of the azide present in the SBA-15 material was converted to the corresponding triazole when propargyl alcohol was used as the substrate. This methodology was also used to incorporate mannose into SBA-15. Incubation of this mannose labeled SBA-15 with fluorescein labeled Concanavalin-A led to the formation of a fluorescent silica-protein hybrid material. The ease of synthesis for the azide labeled SBA-15 material together with its ability to undergo very efficient chemoselective CuAAC in water would make it a very attractive platform for the development of covalently anchored catalysts, enzymes and sensors.
An [Fe(III)(biuret-amide)] complex has been immobilized onto mesoporous silica nanoparticles via Cu(I) catalyzed azide-alkyne click chemistry. This hybrid material functions as an efficient peroxidase mimic and was successfully used for the quantitative determination of hydrogen peroxide and glucose via a one-pot colorimetric assay.
Methacrylate-labeled SBA-15 has been successfully synthesized from calcined SBA-15 and commercially available 3-trichlorosilyl propylmethacrylate. This material undergoes efficient thiol–ene “click reaction” with a variety of both thiol and disulfide-containing substrates in aqueous and organic media. The products were thoroughly characterized by a variety of analytical techniques including multinuclear (13C, 29Si) solid-state NMR, TG-DTA, and nitrogen adsorption desorption studies. Disulfide-containing substrates in which the TCEP-mediated reduction of the disulfide bond and its subsequent addition to the methacrylate group anchored in SBA-15 in one-pot were used to synthesize a silica–protein hybrid material composed of biotin-labeled SBA-15 and streptavidin. Electrochemically active material was synthesized from the reaction of ferrocene-containing thiol and the methacrylate-labeled SBA-15. The ease of synthesis for the methacrylate-labeled SBA-15 material together with its ability to undergo efficient chemoselective thiol–ene reaction would make it a very attractive platform for the development of covalently anchored enzymes and sensors.
Trypsin has been encapsulated in the mesopores of a hierarchical mesoporous silica material synthesized via Cu(I) catalyzed azide-alkyne click reaction between azide functionalized large spherical SBA-15 particles and alkyne functionalized mesoporous silica nanoparticles (MSNs). Encapsulated trypsin functions as an efficient biocatalyst and can be recycled several times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.