In the present work, a noncovalent and eco-friendly approach was proposed to prepare a carbon-black/β-cyclodextrin (CB/β-CD) nanocomposite. CB/β-CD-nanocomposite-modified screen-printed carbon electrodes were applied for the simultaneous determination of the anticancer drug flutamide (Flut) and the environmental pollutant 4-nitrophenol (4-NP). The electrochemical performance of the proposed sensor relied on the conductivity of CB, the different binding strengths of the guests (Flut and 4-NP) to the host (β-CD), and the different reduction potentials of the nitroaromatic compounds. Fascinatingly, the proposed sensor exhibited an excellent electrochemical performance with high sensitivity, selectivity, and reproducibility. The obtained wide linear ranges were 0.05-158.3 and 0.125-225.8 μM for Flut and 4-NP. The low detection limits of 0.016 and 0.040 μM with the higher sensitivities of 5.476 and 9.168 μA μM cm were achieved for the determination of Flut and 4-NP, respectively. The practical feasibility of the proposed sensor was studied in tap-water and human-serum samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.