As a promising alternative platform for cellular immunotherapy, natural killer cells (NK) have recently gained attention as an important type of innate immune regulatory cell. NK cells can rapidly kill multiple adjacent cancer cells through non-MHC-restrictive effects. Although tumors may develop multiple resistance mechanisms to endogenous NK cell attack, in vitro activation, expansion, and genetic modification of NK cells can greatly enhance their anti-tumor activity and give them the ability to overcome drug resistance. Some of these approaches have been translated into clinical applications, and clinical trials of NK cell infusion in patients with hematological malignancies and solid tumors have thus far yielded many encouraging clinical results. CAR-T cells have exhibited great success in treating hematological malignancies, but their drawbacks include high manufacturing costs and potentially fatal toxicity, such as cytokine release syndrome. To overcome these issues, CAR-NK cells were generated through genetic engineering and demonstrated significant clinical responses and lower adverse effects compared with CAR-T cell therapy. In this review, we summarize recent advances in NK cell immunotherapy, focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives on NK cell therapy.
Macrophage-targeting therapies have become attractive strategies for immunotherapy. Deficiency of MARCO significantly inhibits tumor progression and metastasis in murine models of pancreatic cancer. However, the role of MARCO in patients with pancreatic cancer remains unclear. In the present study, we analyzed tumor-associated macrophage (TAM)-related changes using the Cancer Genome Atlas database. We observed a significant enrichment of M2 macrophages in pancreatic cancer tissues. We found that several pro-tumor markers are increased in cancer tissues, including CD163, CD206, SIRPα, LILRB1, SIGLEC10, AXL, MERTK, and MARCO. Crucially, MARCO is highly or exclusively expressed in pancreatic cancer across many types of solid tumors, suggesting its significant role in pancreatic cancer. Next, we investigated the expression of MARCO in relation to the macrophage marker CD163 in a treatment-naïve pancreatic cancer cohort after surgery (n = 65). MARCO and CD163 were analyzed using immunohistochemistry. We observed increased expression of CD163 and MARCO in pancreatic cancer tissues compared with paracancerous tissues. Furthermore, we observed a large variation in CD163 and MARCO expression in pancreatic cancer tissues among cases, suggesting the heterogeneous expression of these two markers among patients. Correlation to clinical data indicated a strong trend toward worse survival for patients with high CD163 and MARCO macrophage infiltration. Moreover, high CD163 and MARCO expression negatively affected the disease-free survival and overall survival rates of patients with pancreatic cancer. Univariate and multivariate analysis revealed that CD163 and MARCO expression was an independent indicator of pancreatic cancer prognosis. In conclusion, high CD163 and MARCO expression in cancer tissues is a negative prognostic marker for pancreatic cancer after surgery. Furthermore, anti-MARCO may be a novel therapy that is worth studying in depth.
The therapeutic goal of cancer treatment is now geared towards triggering tumour-selective cell death with autophagic cell death being required for the chemotherapy of apoptosis-resistant cancer. In this study, Carnosic acid (CA), a polyphenolic diterpene isolated from Rosemary (Rosemarinus officinalis), significantly induced autophagic cell death in HepG2 cells. Ca treatment caused the formation of autophagic vacuoles produced an increasing ratio of LC3-II to LC3-I in a time- and dose-dependent manner but had no effect on the levels of autophagy-related protein ATG6 and ATG13 expression. Autophagy inhibitors, 3-methyladenine (3-MA), chloroquine and bafilomycin A1, or ATG genes silencing in HepG2 cells significantly inhibited CA-induced autophagic cell death. The CA treatment decreased the levels of phosphorylated Akt and mTOR without any effects on PI3K or PTEN. Most importantly, overexpression of Akt and knockdown of PTEN attenuated autophagy induction in CA-treated cells. Taken together, our results indicated that CA induced autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. These findings suggest that CA has a great potential for the treatment of hepatoma via autophagic induction.
Toosendanin (TSN) is a triterpenoid extracted from the bark or fruits of Melia toosendan Sieb et Zucc, which is a traditional Chinese medicine and mainly grows in China and India. TSN has been verified to possess antitumor activities on various human cancers, whereas the effects of TSN on ovarian cancer (OC) has not been reported yet. Here, TSN was shown to significantly inhibit proliferation of SKOV3 and OVCAR3 cell lines in a dose- and time-dependent manner. Treatment of OC cells with TSN resulted in colony formation reduction, S and G2/M phase arrest, cell apoptosis, and dramatic decrease in mitochondrial membrane potential. Furthermore, TSN suppressed invasion and migration of OC cells. Research on molecular mechanism indicated that the above efficacy of TSN was associated with decreased expression of survivin, PARP-1, Bcl-2, Bcl-xl, caspase-3, caspase-9, MMP-2 and MMP-9 and increased expression of cleaved PARP-1, Bax, cleaved caspase-3 and cleaved caspase-9. Finally, in vivo results showed that TSN suppressed OC xenograft tumor growth by inducing apoptosis and regulating the related protein expression levels of SKOV3 cells in transplanted tumors. Taken together, our data provide new insights into TSN as a potentially effective reagent against human OC through caspase-dependent mitochondrial apoptotic pathway.
The paper aimed to screen out genetic markers applicable to early diagnosis for colorectal cancer and establish apoptotic regulatory network model for colorectal cancer, and to analyze the current situation of traditional Chinese medicine (TCM) target, thereby providing theoretical evidence for early diagnosis and targeted therapy of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers that are applied to early diagnosis of colorectal cancer were searched and performed comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. KEGG analysis was employed to establish apoptotic regulatory network model based on screened genetic markers, and optimization was conducted on TCM targets. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, P53, APC, DCC and PTEN, among which DCC has the highest diagnostic efficiency. Apoptotic regulatory network was built by KEGG analysis. Currently, it was reported that TCM has regulatory function on gene locus in apoptotic regulatory network. The apoptotic regulatory model of colorectal cancer established in this study provides theoretical evidence for early diagnosis and TCM targeted therapy of colorectal cancer in clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.