Genistein (Gen) soy isoflavone produces extensive pro-apoptotic anticancer effects, mediated predominantly via induction of mitochondrial damages. Rationalization of the native mitochondrial selectivity of Gen, utilizing biophysical model assumptions, led to our design of cationic lipid-based nanocarriers (NC) of Gen. Prototype nanoformulations, lipidic micelles (Mic) and nanoemulsions (NEs) incorporated Gen to serve as both therapeutic and targeting moieties, specific for mitochondria. Both Gen-NCs, showing superior physicochemical properties, produced significant cytotoxicity (5-10-fold lower EC50), compared to all drug controls, in hepatic and colon carcinomas. Owing to the mitochondria-specific accumulation of Gen-NCs, their mitochondrial depolarization effect was most evident, leading to marked activation of intrinsic apoptotic pathway markers--cytosolic cytochrme c and specific caspase-9--thus, confirming the direct mitochondrial action of Gen-NCs. This mechanistic evidence of the mitochondria specificity of our Gen-NE and Gen-Mic strongly indicates their potential as targeted delivery nanosystems to augment anticancer efficacy of many lipophilic chemotherapeutics.
Clinical use of genistein against cancer is limited by its extremely low aqueous solubility, poor bioavailability and pharmacokinetics. Based on structural analogy with steroidal compounds, liposomal vehicle compositions were designed and optimized for maximum incorporation of genistein's flavonoid structure. Model conventional and stealth liposomes of genistein (GenLip)--incorporating unsaturated phospholipids and cholesterol--have demonstrated enhanced drug solubilization (over 350-folds > aqueous drug solution), shelf-life stability, and extended release profile. Owing to effective cellular delivery, preservation of genistein's antioxidant activity was confirmed through marked neutralization of peroxides via GenLip, in both quantitative and microscopic fluorescent-probe oxidation assays. Furthermore, significant broad-spectrum anticancer efficacy of GenLip, in murine and human cancer cell lines (p < 0.05-0.001), was achieved in a concentration and time-dependent manner--approx. 5-7 lower IC50 values versus all non-incorporated drug controls. Indicative of key pro-apoptotic activity, GenLip produced DNA laddering, with 1/3 of free drug solution content, and resulted in the highest induction level of P53-independent apoptotic pathway markers, compared to all treatments, in our assays (namely, mitochondrial polarization, and caspase-3/7 enzymes). Our proof-of-principle pharmaceutical design of genistein-loaded liposomes shows optimal loading capacity and physico-chemical properties, which improved cellular delivery and specific pro-apototic effectiveness of incorporated drug, against various cancers.
Oral cavity and oropharyngeal cancers are considered the eighth most common cancer worldwide, with relatively poor prognosis (62% of patients surviving 5 years, after diagnosis). The aim of this study was to develop a proof-of-concept mucoadhesive lozenge/buccal tablet, as a potential platform for direct sustained delivery of therapeutic antimitotic nanomedicines. Our system would serve as an adjuvant therapy for oral cancer patients undergoing full-scale diagnostic and operative treatment plans. We utilized lipid-based nanocarriers, namely nanoemulsions (NEs), containing mixed-polyethoxylated emulsifiers and a tocopheryl moiety–enriched oil phase. Prototype NEs, loaded with the proapoptotic lipophilic drug genistein (Gen), were further processed into buccal tablet formulations. The chitosan polyelectrolyte solution overcoat rendered NE droplets cationic, by acting as a mucoadhesive interfacial NE layer. With approximate size of 110 nm, the positively charged chitosan-layered NE (+25 mV) vs negatively charged chitosan-free/primary aqueous NE (−28 mV) exhibited a controlled-release profile and effective mucoadhesion for liquid oral spray prototypes. When punch-pressed, porous NE-based buccal tablets were physically evaluated for hardness, friability, and swelling in addition to ex vivo tissue mucoadhesion force and retention time measurements. Chitosan-containing NE tablets were found equivalent to primary NE and placebo tablets in compression tests, yet significantly superior in all ex vivo adhesion and in vitro release assays (
P
≤0.05). Following biocompatibility screening of prototype chitosan-layered NEs, substantial anticancer activity of selected cationic Gen-loaded NE formulations, against two oropahryngeal carcinomas, was observed. The data strongly indicate the potential of such nanomucoadhesive systems as maintenance therapy for oral cancer patients awaiting surgical removal, or postresection of identified cancerous lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.