Sporothrix schenckii is a pathogenic dimorphic fungus with a global distribution. It grows in a multicellular hyphal form at 25°C and a unicellular yeast form at 37°C. The morphological switch from mold to yeast form is obligatory for establishing pathogenicity in S. schenckii. Two-component signaling systems are utilized by eukaryotes to sense and respond to external environmental changes. DRK1is a hybrid histidine kinase, which functions as a global regulator of dimorphism and virulence in Blastomyces dermatitidis and Histoplasma capsulatum. An intracellular soluble hybrid histidine kinase, homologous to DRK1 in B. dermatitidis, has previously been identified in S. schenckii and designated as SsDRK1. In the present study, the function of SsDRK1 was investigated using double stranded RNA interference mediated by Agrobacterium tumefaciens. SsDRK1 was demonstrated to be required for normal asexual development, yeast-phase cell formation, cell wall composition and integrity, melanin synthesis, transcription of the morphogenesis-associated gene Ste20 that is involved in the high osmolarity glycerol/mitogen-activated protein kinase pathway, and pathogenicity of S. schenckii in a murine model of cutaneous infection. Further investigations into the signals SsDRK1 responds to, and the interactions of upstream transmembrane hybrid histidine kinases with SsDRK1, are required to uncover novel targets for anti-fungal therapies.
The dimorphism of Sporothrix schenckii (S. schenckii) reflects a developmental switch in morphology and lifestyle that is necessary for virulence. DRK1, a hybrid histidine kinase, functions as a global regulator of dimorphism and virulence in Blastomyces dermatitidis (B. dermatitidis) and Histoplasma capsulatum (H. capsulatum). The partial cDNA sequence of DRK1 of S. schenckii, designated SsDRK1, was obtained using degenerate primers based on the conserved domain of the DRK1 of other fungi. The complete cDNA sequence of SsDRK1 was obtained by 5' and 3' RACE. The full-length cDNA is 4743 bp in size and has an open reading frame (ORF) of 4071 bp, encoding 1356 amino acid residues. The predicted molecular mass of SsDRK1 is 147.3 kDa with an estimated theoretical isoelectric point of 5.46. The deduced amino acid sequence of SsDRK1 shows 65% identity to that of B. dermatitidis. The SsDRK1 was predicted to be a soluble histidine kinase and to contain three parts: sensor domain, linker domain and functional domain. Quantitative real-time RT-PCR revealed that SsDRK1 was more highly expressed in the yeast stage compared with that in the mycelial stage, which indicated that the SsDRK1 may be involved in the dimorphic switch in S. schenckii.
Constipation is one of the most common functional gastrointestinal disorders accompanied with intestinal dysbiosis. Laxatives for constipation usually have side effects. Bee honey is a natural food with unique composition, antimicrobial properties, and bifidogenic effect. In order to assess whether honey can ameliorate loperamide‐induced constipation in BALB/c mice through the alteration of the gut microbiota, the present study was undertaken. Mice were given Jarrah honey (7.5 g/kg body weight) by gavage once per day for 5 days. Fecal water content, intestinal transit rate together with the colon concentrations of substance P (SP), vasoactive intestinal peptide (VIP), and serotonin (5‐hydroxytryptamine; 5‐HT) were evaluated. Furthermore, we determined the effect of honey treatment on gut microbiota in mice using stool genomic 16S rRNA sequencing. As a result, honey showed an obvious improvement in fecal water content and alleviated constipation by modulating the microbial composition of the microbiota, and this was highly associated with a proportional decrease in gut Desulfovibrio. In addition, we found that the colon level of neurotransmitters SP and VIP was significantly related to microbial variations. Our results indicate that gut microbiota is involved in the alleviation of loperamide‐induced constipation by honey supplementation in mice, and it could be considered as an evaluating parameter in constipation therapy strategies.
Using the PCR technique and specific primers, we developed a new diagnostic method that can rapidly diagnose sporotrichosis with tissues obtained from clinical biopsies.
Sporotrichosis is a common cutaneous mycosis caused by the dimorphic fungus Sporothrix schenckii, which exhibits a temperature-dependent dimorphic switch. At 25°C, it grows in a mycelial phase, while at 37°C, it forms unicellular yeast cells. The formation of yeast cells was thought to be a requisite for the pathogenicity of S. schenckii. To identify fragments that might be related to morphogenesis, whole-cell proteins from the mold and early yeast stages of S. schenckii were analyzed using 2DE. Among thousands of protein molecules displayed, more than 300 showed a differential expression between the two phases. In particular, 24 yeast-specific proteins were identified using MALDI-TOF/MS. One of the most interesting proteins was a hybrid histidine kinase, DRK1, a global regulator of dimorphism and virulence in Blastomyces dermatitidis and Histoplasma capsulatum that was abundant in the yeast phase. Our study introduced a new approach to study dimorphism in S. schenckii, and the data may help us better understand the molecular mechanisms of phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.