GABAA receptor-mediated inhibition depends on the maintenance of low level intracellular [Cl−] concentration, which in adult depends on neuron specific K+-Cl− cotransporter-2 (KCC2). Previous studies have shown that KCC2 was downregulated in both epileptic patients and various epileptic animal models. However, the temporal relationship between KCC2 downregulation and seizure induction is unclear yet. In this study, we explored the temporal relationship and the influence of KCC2 downregulation on seizure induction. Significant downregulation of plasma membrane KCC2 was directly associated with severe (Racine Score III and above) behavioral seizures in vivo, and occurred before epileptiform bursting activities in vitro induced by convulsant. Overexpression of KCC2 using KCC2 plasmid effectively enhanced resistance to convulsant-induced epileptiform bursting activities in vitro. Furthermore, suppression of membrane KCC2 expression, using shRNAKCC2 plasmid in vitro and shRNAKCC2 containing lentivirus in vivo, induced spontaneous epileptiform bursting activities in vitro and Racine III seizure behaviors accompanied by epileptic EEG in vivo. Our findings novelly demonstrated that altered expression of KCC2 is not the consequence of seizure occurrence but likely is the contributing factor.
We have previously demonstrated that cyclothiazide (CTZ) is a potent convulsant drug inducing robust epileptiform activity in hippocampal neurons both in vitro and in vivo. Here we further establish an animal model for CTZ-induced behavioral seizures in freely moving rats. Microinjection of CTZ into left ventricle dose-dependently induced robust seizure behaviors within three hours after administration. At doses of 0.75 μmol, CTZ induced Racine score IV-V seizure behaviors in 71% (n=14) of the rats tested. In addition, CTZ also induced epileptiform EEG activity accompanying behavioral seizures. The convulsant action of CTZ on both behavior and EEG was blocked by pre-treatment with clinical anticonvulsant drug diazepam (n=5). In conclusion, our results demonstrate that CTZ is capable of inducing behavioural seizures in intact animals. Since CTZ acts on both GABAergic and glutamatergic systems, this new animal epilepsy model will be useful for anticonvulsant drug testing and general epilepsy research.
We have previously reported that cyclothiazide (CTZ) evokes epileptiform activities in hippocampal neurons and induces seizure behavior. Here we further studied in vivo the sensitivity of the hippocampal CA1 neurons in response to CTZ in epileptogenesis in comparison with two other classic convulsants of kainic acid (KA) and pentylenetetrazol (PTZ). CTZ administered intracerebral ventricle (i.c.v.) induced epileptiform activities from an initial of multiple evoked population spikes, progressed to spontaneous spikes and finally to highly synchronized burst activities in hippocampal CA1 neurons. PTZ, when given by subcutaneously, but not by intracerebral ventricle injection, evoked similar progressive epileptiform activities. In contrast, KA given by i.c.v. induced a quick development of epileptiform burst activities and then shortly switched to continuous high frequency firing as acute status epilepticus (ASE). Pharmacologically, alprazolam, a high-potency benzodiazepine ligand, inhibited CTZ and PTZ, but not KA, induced epileptiform burst activities while GYKI 53784, an AMPA receptor antagonist, suppressed CTZ and KA but not PTZ evoked epileptiform activities. In conclusion, CTZ and PTZ induced epileptiform activities are most likely to share a similar progressive pattern in hippocampus with GABAergic mechanism dominant in epileptogenesis, while CTZ model involves additional glutamate receptor activation. KA induced seizure in hippocampus is different to that of both CTA and PTZ. The results from this study indicate that hippocampal neurons respond to various convulsant stimulation differently which may reflect the complicated causes of the seizure in clinics.
LCBDE can be safely performed in patients with Child-Pugh A or B cirrhosis and choledocholithiasis, with considerable efficiency, minimal short-term complications, and acceptable long-term outcomes. LCBDE has the advantages over open CBD exploration of less bleeding and reduced length of hospital stay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.