Amyloid-β oligomers (AβOs) are the most important toxic species in the brain of Alzheimer's disease (AD) patient. AβOs, therefore, are considered reliable molecular biomarkers for the diagnosis of AD. Herein, we reported a simple and sensitive electrochemical method for the selective detection of AβOs using silver nanoparticles (AgNPs) as the redox reporters and PrP(95-110), an AβOs-specific binding peptide, as the receptor. Specifically, adamantine (Ad)-labeled PrP(95-110), denoted as Ad-PrP(95-110), induced the aggregation and color change of AgNPs and the follow-up formation of a network of Ad-PrP(95-110)-AgNPs. Then, Ad-PrP(95-110)-AgNPs were anchored onto a β-cyclodextrin (β-CD)-covered electrode surface through the host-guest interaction between Ad and β-CD, thus producing an amplified electrochemical signal through the solid-state Ag/AgCl reaction by the AgNPs. In the presence of AβOs, Ad-PrP(95-110) interacted specifically with the AβOs, thus losing the capability to bind AgNPs and to induce the formation of an AgNPs-based network on the electrode surface. Consequently, the electrochemical signal decreased with an increase in the concentration of AβOs in the range of 20 pM to 100 nM. The biosensor had a detection limit of 8 pM and showed no response to amyloid-β monomers (AβMs) and fibrils (AβFs). On the basis of the well-defined and amplified electrochemical signal of the AgNPs-based network architecture, these results should be valuable for the design of novel electrochemical biosensors by marrying specific receptors.
Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.