Background
Hepatocellular carcinoma (HCC) is an inflammation-associated tumor involved in immune tolerance and evasion in the immune microenvironment. Heat shock proteins (HSPs) are involved in the occurrence, progression, and immune regulation of tumors. Therefore, HSPs have been considered potential therapeutic targets. Here, we aimed to elucidate the value of HSP family A (Hsp70) member 4 (HSPA4) in the diagnosis and predicting prognosis of HCC, and its relationship with immune cell infiltration, immune cell biomarkers, and immune checkpoints. Gene mutation, DNA methylation, and the pathway involved in HCC were also analyzed.
Methods
The gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to compare HSPA4 expression, and the results were confirmed by immunohistochemical staining of clinical samples. R package was used to analyze the correlation between HSPA4 and cancer stage, and to establish receiver operating characteristic (ROC) curve of diagnosis, time-dependent survival ROC curve, and a nomogram model. cBioPortal and MethSurv were used to identify genetic alterations and DNA methylation, and their effect on prognosis. The Tumor Immune Estimation Resource (TIMER) was used to analyze immune cell infiltration, immune cell biomarkers, and immune checkpoints. The STRING database was used to analyze protein–protein interaction network information. Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the functions of HSPA4 and its functional partner genes.
Results
Overexpression of HSPA4 was identified in 25 cancers. Overexpression of HSPA4 considerably correlated with cancer stage and alpha-fetoprotein (AFP) level in HCC. Patients with higher HSPA4 expression showed poorer prognosis. HSPA4 expression can accurately identify tumor from normal tissue (AUC = 0.957). The area under 1-, 3-, and 5-year survival ROCs were above 0.6. The HSPA4 genetic alteration rate was 1.3%. Among the 14 DNA methylation CpG sites, seven were related to the prognosis of HCC. HSPA4 was positively related to immune cell infiltration and immune checkpoints (PD-1 and CTLA-4) in HCC. The KEGG pathway enrichment analysis revealed HSPA4 enrichment in antigen processing and presentation together with HSPA8 and HSP90AA1. We verified the value of HSPA4 in the diagnosis and predicting prognosis of HCC. HSPA4 may not only participate in the occurrence and progression but also the immune regulation of HCC. Therefore, HSPA4 can be a potential diagnostic and prognostic biomarker and a therapeutic target for HCC.
A Hg 2+-related quenching photoluminescence (PL) sensor was fabricated based on nitrogen-doped graphene quantum dots (N-GQDs) as the luminescent agent and glutathione as the masking agent to detect Hg 2+ in tap water. The addition of Hg 2+ significantly reduced the PL intensity of N-GQDs, which was attributed to coordination reaction inducing the aggregation of N-GQDs. The Hg 2+-related quenching PL sensor with glutathione as the masking agent has good selectivity and accuracy. The sensor showed a linear relationship ranging from 0.5 to 110 nM with the detection limit 0.08 nM (S/N = 3). The proposed method was applied to the determination of Hg 2+ in tap water, and the results were consistent with atomic absorption spectroscopy (AAS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.