With the unceasing advancement of wide-bandgap (WBG) semiconductor technology, the minimal reverse-recovery charge Qrr and other more powerful natures of WBG transistors enable totem-pole bridgeless power factor correction to become a dominant solution for energy storage systems (ESS). This paper focuses on the design and implementation of a control structure for a totem-pole boost PFC with newfangled enhancement-mode gallium nitride field-effect transistors (eGaN FETs), not only to simplify the control implementation but also to achieve high power quality and efficiency. The converter is designed to convert a 90–264-VAC input to a 385-VDC output for a 2.6-kW output power. Lastly, to validate the methodology, an experimental prototype is characterized and fabricated. The uttermost efficiency at 230 VAC reaches 99.14%. The lowest total harmonic distortion in the current (ITHD) at high line condition (230 V) attains 1.52% while the power factor gains 0.9985.
An active-clamp zero-voltage-switching (ZVS) buck-boost converter is proposed in this paper to improve the performance of converter in light load condition.By employing a small resonant inductor, the ZVS range of switches could be adjusted to very light load condition. Moreover, 2 clamping capacitors are added in the converter to eliminate the voltage spike on the switches during transition. The operating principle of the proposed converter is analyzed, and the optimal design guide for full range ZVS is also provided. A 60-W output prototype is experimentally built and tested in laboratory to verify the feasibility of proposed converter. The measured results show the critical ZVS operation of power switches at 1 and 0.7-W output power for buck and boost mode, respectively. The peak conversion efficiency is up to 92.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.