Featuring controllable electrochemomechanical deformation and excellent biocompatibility, polypyrrole electroactuators used as artificial muscles play a vital role in the design of biomimetic robots and biomedical devices. In the past decade, tremendous efforts have been devoted to their optimization on electroactivity, electrochemical stability, and actuation speed, thereby gradually filling the gaps between desired capabilities and practical performances. This review summarizes recent advances on polypyrrole electroactuators, with particular emphases on novel counterions and conformation-reinforcing skeletons. Progress and challenges are comparatively demonstrated and critically analyzed, to enlighten future developments of advanced electroactuators based on polypyrrole and other conducting polymers.
Implantable devices for long-lasting controlled insulin microinjection are of great value to diabetic patients. To address this need, we develop a flexible electroactive pump based on a biocompatible polypyrrole composite film that comprises a polypyrrole matrix and a macromolecular dopant of polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone. Using phosphate-buffered saline as the electrolyte, this film demonstrates much higher electroactivity and reproducibility than conventional Cl--doped polypyrrole, making it an excellent actuator for driving an implantable pump. At a driving current density of 1 mA/cm2, the pump demonstrates a consistent output capacity of 10.5 at 0.35 μL/s over 20 cycles. This work paves the way for the development of an implantable electroactive pump to improve the quality of life of diabetics.
Zinc oxide (ZnO)-based photoanodes with sunlight photocatalytic activity are widely used in dye-sensitized solar cells. Presently, most of such electrodes are inflexible due to the rigidness of ZnO and substrate, thus hindering their application in flexible electronics. Here, we report a flexible composite film of ZnO microrod arrays and polypyrrole (PPy) featuring significant flexibility, durability, and photocatalytic capability under visible light. In this composite film, the upper section of the ZnO microrods is coated with an approximately 400 nm thick PPy shell, and the lower section of the ZnO microrods is tightly embedded into an underlying PPy base layer, creating an integrated heterogeneous structure. The upper PPy coating shell serves as a photosensitizer for the ZnO-based photocatalysis, while the lower PPy base layer facilitates electron transport to the substrate and mechanically reinforces the ZnO microrod arrays. Under visible light, this facile structure achieves much higher photocatalytic efficiency in comparison to pure ZnO microrod arrays or PPy film, degrading methylene blue at a rate of 0.22%/min. This photocatalytic composite film may find promising applications in flexible solar cells to power stretchable and wearable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.