In this paper, the Ti2AlNb alloy was bonded to TC4 alloy using the vacuum diffusion bonding method with a Ti interlayer. The interfacial microstructure of the Ti2AlNb/Ti/TC4 joint was characterized. The relationship between the bonding parameters and the microstructure and mechanical property of the joints was explored. Results indicated that the interdiffusion of Nb and Al elements between the interlayer and substrates promoted the formation of the lamellar α + β dual-phase structure in the joint. The bonding parameters determined the diffusion distance of Nb and Al elements, thus controlling the characteristics of the lamellar α + β dual-phase structure. When the Ti2AlNb alloy and TC4 alloy were bonded at 950 °C for 30 min under a pressure of 10 MPa, the elemental diffusion in the bonding couple was sufficient and the joint possessed the maximum shear strength of 549 MPa.
In this study, SiCp/Al composites were bonded using the laser-induced exothermic bonding method. The nanostructured Al/Ni energetic materials were prepared by the high-energy ball-milling method and served as the bonding interlayer. The joint microstructure was characterized by SEM, EDS, TEM, and XRD. The effect of Zr content on the joint microstructure and shear strength was investigated. The results indicated that after the ball-milling process the Al and Ni particles underwent strong plastic deformations and were welded to each other, forming the nanostructured Al/Ni energetic materials with a lamellar structure. Compared with the raw powders, the location of the exothermic peak decreased by 42 K, and its exothermic performance was significantly improved. The exothermic reactions that occurred in the Al/Ni interlayer provided the required heat for the bonding process. Near the bonding interface, the interlayer could not react completely due to the cooling effect of the substrates, forming a mixture of residual metal particles and Ni-Al compounds. The addition of Zr content enhanced the interfacial reactions between the bonding interlayer and the SiCp/Al composites. The interlayer products transformed from NiAl to the eutectic organization of NiAl + Ni-Al-Zr, thus decreasing the pores in the joint and improving the bonding quality. With an increase in the Zr content, the joint shear strength first increased and then decreased. When the Zr content was 10 wt.%, the joint shear strength reached a maximum of 22 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.