Background Severe traumatic brain injury (TBI) has been increasing with greater incidence of injuries from traffic or sporting accidents. Although there are a number of animal models of TBI using progesterone for head injury, the effects of progesterone on neurologic outcome of acute TBI patients remain unclear. The aim of the present clinical study was to assess the longer-term efficacy of progesterone on the improvement in neurologic outcome of patients with acute severe TBI.
A study was undertaken in rabbit tibiae to determine the effects of chemical treatments and/or surface-induced bonelike apatite on the bone-bonding ability of titanium (Ti) implants. Smooth-surfaced plates (10 x 10 x 2 mm) of pure Ti, alkalil- and heat-treated Ti, and bonelike apatite-formed Ti after the treatments were implanted into the tibial metaphyses of mature rabbits. The tibiae containing the implants were harvested at 4, 8, and 16 weeks after implantation and subjected to a tensile testing and histologic evaluation. Biomechanical results showed that both treated implants exhibited significantly higher failure loads compared with untreated Ti implants at all time periods. Histologic examination by Giemsa surface staining, contact microradiography (CMR), and scanning electron microscopy (SEM) in backscatter mode revealed that both treated Ti implants directly bonded to bone tissue during the early postimplantation period, whereas untreated Ti implants formed direct contact with the bone only at 16 weeks. SEM-electron-probe microanalysis (EPMA) examination showed a Ca-P-rich layer at the interface between the treated implants and bone, although the Ca-P-rich layer was not detected on the surface of untreated implants during observation periods. The results of this study suggest that chemical treatments may accelerate the bone-bonding behavior of titanium implants and enhance the strength of bone-implant bonding by inducing a bioactive surface layer on Ti implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.