Interfacial relationships between biomaterials and tissues strongly influence the success of implant materials and their long-term functionality. Owing to the inhomogeneity of biological tissues at an interface, in particular bone tissue, two-dimensional images often lack detail on the interfacial morphological complexity. Furthermore, the increasing use of nanotechnology in the design and production of biomaterials demands characterization techniques on a similar length scale. Electron tomography (ET) can meet these challenges by enabling high-resolution three-dimensional imaging of biomaterial interfaces. In this article, we review the fundamentals of ET and highlight its recent applications in probing the three-dimensional structure of bioceramics and their interfaces, with particular focus on the hydroxyapatite-bone interface, titanium dioxide-bone interface and a mesoporous titania coating for controlled drug release.