This paper presents the design, simulation, fabrication and experiments of a micromachined z-axis tunneling magnetoresistive accelerometer with electrostatic force feedback. The tunneling magnetoresistive accelerometer consists of two upper differential tunneling magnetoresistive sensors, a middle plane main structure with permanent magnetic films and lower electrostatic feedback electrodes. A pair of lever-driven differential proof masses in the middle plane main structure is used for sensitiveness to acceleration and closed-loop feedback control. The tunneling magnetoresistive effect with high sensitivity is adopted to measure magnetic field variation caused by input acceleration. The structural mode and mass ratio between inner and outer proof masses are optimized by the Ansys simulation. Simultaneously, the magnetic field characteristic simulation is implemented to analyze the effect of the location of tunneling magnetoresistive sensors, magnetic field intensity, and the dimension of permanent magnetic film on magnetic field sensitivity, which is beneficial for the achievement of maximum sensitivity. The micromachined z-axis tunneling magnetoresistive accelerometer fabricated by the standard deep dry silicon on glass (DDSOG) process has a device dimension of 6400 μm (length) × 6400 μm (width) × 120 μm (height). The experimental results demonstrate the prototype has a maximal sensitivity of 8.85 mV/g along the z-axis sensitive direction under the gap of 1 mm. Simultaneously, Allan variance analysis illustrate that a noise floor of 86.2 μg/Hz0.5 is implemented in the z-axis tunneling magnetoresistive accelerometer.
A digital closed-loop driving technique is presented in this paper that uses the PFD-(phase frequency detector-) based CORDIC (coordinate rotation digital computer) algorithm for a biaxial resonant microaccelerometer. A conventional digital closed-loop selfoscillation system based on the CORDIC algorithm is implemented and simulated using Simulink software to verify the system performance. The system performance simulations reveal that the incompatibility between the sampling frequency and effective bits of AD and DA convertors limits further performance improvements. Therefore, digital, closed-loop self-oscillation using the PFD-based CORDIC algorithm is designed to further optimize the system performance. The system experimental results illustrate that the optimized system using the PFD-based CORDIC improves the bias stability of the resonant microaccelerometer by more than 5.320 times compared to the conventional system. This demonstrates that the optimized digital closed-loop driving technique using the PFD-based CORDIC for the biaxial resonant microaccelerometer is effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.