AimNumerous reports have demonstrated the key importance of macrophage-elicited metabolic inflammation in insulin resistance (IR). Our previous studies confirmed that hyperuricemia or high uric acid (HUA) treatment induced an IR state in several peripheral tissues to promote the development of type 2 diabetes mellitus (T2DM). However, the effect of HUA on glucose uptake and the insulin sensitivity of macrophages and its mechanism is unclear.MethodsTo assess systemic IR, we generated hyperuricemic mice by urate oxidase knockout (UOX-KO). Then, glucose/insulin tolerance, the tissue uptake of 18F-fluorodeoxyglucose, body composition, and energy balance were assessed. Glucose uptake of circulating infiltrated macrophages in the liver was evaluated by glucose transporter type 4 (GLUT-4) staining. Insulin sensitivity and the insulin signaling pathway of macrophages were demonstrated using the 2-NBDG kit, immunoblotting, and immunofluorescence assays. The immunoprecipitation assay and LC-MS analysis were used to determine insulin receptor substrate 2 (IRS2) levels and its interacting protein enrichment under HUA conditions.ResultsCompared to WT mice (10 weeks old), serum uric acid levels were higher in UOX-KO mice (WT, 182.3 ± 5.091 μM versus KO, 421.9 ± 45.47 μM). Hyperuricemic mice with metabolic disorders and systemic IR showed inflammatory macrophage recruitment and increased levels of circulating proinflammatory cytokines. HUA inhibited the nuclear translocation of GLUT-4 in hepatic macrophages, restrained insulin-induced glucose uptake and glucose tolerance, and blocked insulin IRS2/PI3K/AKT signaling. Meanwhile, HUA mediated the IRS2 protein degradation pathway and activated AMPK/mTOR in macrophages. LC-MS analysis showed that ubiquitination degradation could be involved in IRS2 and its interacting proteins to contribute to IR under HUA conditions.ConclusionThe data suggest that HUA-induced glucose intolerance in hepatic macrophages contributed to insulin resistance and impaired the insulin signaling pathway via IRS2-proteasome degradation
Cisplatin is a widely used and potent anti-neoplastic agent, but severe and inescapable side effects in multiple normal tissues and organs limit its application, especially nephrotoxicity. Molecular mechanisms of cisplatin nephrotoxicity involve mitochondrial damage, oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, necroptosis, etc. Receptor of advanced glycation end products (RAGE) is a multiligand pattern recognition receptor, engaged in inflammatory signaling and mitochondrial homeostasis. Whether inhibition of RAGE alleviates cisplatin-induced nephropathy has not been investigated. Here, we revealed that RAGE deficiency attenuates cisplatin-induced acute nephrotoxicity, as evidenced by reduced apoptosis, inflammation, lipid accumulation, restored mitochondrial homeostasis and fatty acid oxidation in renal tubular epithelial cells (TECs). In vitro studies showed that, the RAGE-specific inhibitor FPS-ZM1 attenuated the cisplatin-induced decrease of cell viability and fatty acid oxidation in the normal rat renal TEC line NRK-52E cells. Taken together, RAGE knockout mitigated cisplatin-induced acute nephrotoxicity by inhibiting apoptosis, inflammation, and restoring fatty acid oxidation in TECs, suggesting that RAGE inhibition could be a therapeutic option for cisplatin-induced acute nephrotoxicity.
Background: Doxorubicin (DOX) is a chemotherapeutic drug that induces cardiotoxicity known as doxorubicin -induced cardiomyopathy(DIC). Studies have confirmed that DOX can cause cardiac damage via ferroptosis. High uric acid (HUA), as a pro-oxidant, participates in the pathophysiology of cardiovascular disease. Epidemiological studies suggest elevated uric acid levels can have detrimentaleffects on cardiovascular disease. However, the effect of hyperuricemia in a specific type of cardiomyopathy, DIC, is unclear. It is unknown if HUA exacerbates DIC and if the tumor patients with hyperuricemia will aggravate the cardiac side effects of DOX. Methods: In uricase knockout (Uox-/-) mice, we explored the effect of HUA on DOX-induced cardiotoxicity, including cardiac function, pathomorphology, and its mechanism. Results: We demonstrated that Uox-KO mice accelerated the development of DIC, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with DOX treatment. Benzbromarone, a UA-lowering drug, decreases myocardial fibrosis and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterwards, we demonstrated that HUA can promote oxidative stress in DOX, characterised by increased mitochondrial ROS, and down-regulate protein levels of glutathione peroxidase 4 (GPX4). N-acetyl-L-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. Conclusions: Our data suggested that HUA promotes the DIC. And HUA promotes DOX-induced ferroptosis by increasing oxidative stress and down-regulating GPX4. It is implied that tumor patients with hyperuricemia may increase cardiac side effects when taking DOX during chemotherapy treatment.
Aims: Acute rupture or erosion of unstable atherosclerotic plaques is a major cause of adverse consequences of atherosclerotic cardiovascular disease, often leading to myocardial infarction or stroke. High uric acid (HUA) is associated with the increasing risk of cardiovascular events and death. However, the mechanism by which HUA promotes atherosclerosis and whether HUA affects plaque stability are still unclear. Methods: We constructed an atherosclerotic Apoe−/− mouse model with HUA. The progression of atherosclerosis and plaques was determined by Oil Red O staining, hematoxylin and eosin (H&E) staining, and Masson staining. TdT-mediated dUTP nick-end labeling assay and immunohistochemistry were used to observe the changes of apoptosis and autophagy in plaques, respectively. Then, we validated the in vivo results with RAW 264.7 cell line. Results: HUA promoted atherosclerosis and exacerbated plaque vulnerability, including significantly increased macrophage infiltration, lipid accumulation, enlarged necrotic cores, and decreased collagen fibers. HUA increased cell apoptosis and inhibited autophagy in plaques. In vitro results showed that HUA decreased cell viability and increased cell apoptosis in foam cells macrophages treated with oxidized low-density lipoprotein. An activator of autophagy, rapamycin, can partially reverse the increasing apoptosis. Conclusion: HUA promoted atherosclerosis and exacerbated plaque vulnerability, and HUA facilitates foam cell apoptosis by inhibiting autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.