Internal erosion caused by broken sewer pipes often leads to ground subsidence in urban area, which is a major risk to public safety and has caused substantial socioeconomic loss. In order to ensure the ground stabilization and the safety of buried pipelines, it is necessary to understand the process of internal erosion around a submerged defective pipe. In this paper, the Dynamic Fluid Mesh (DFM) is coupled with the three-dimensional discrete element method (DEM) to simulate internal erosion in gap-graded soils above a defective pipe. In this fluid-solid coupling scheme, the fluid mesh can be generated according to the soil skeleton formed by coarse particles and updated at regular intervals. Seepage forces are calculated and applied on solid particles in the DEM model. The approach accounts for permeability and porosity changes due to soil skeleton deformation and internal erosion. In this study, some gap-graded soils samples with different size ratio are established. A defective pipe is placed below the sample. After that, different hydraulic gradients are applied to the sample. Fine particles are washed away from the hole in the pipe. The results indicate that the erosion process can be divided into three stages according to changes in the erosion rate. In the initial stage, numerous fine particles are washed away, and the flow rate increases with the increase of eroded particles. Subsequently, the erosion rate decreases and the flow rate tends to reach a steady state. Finally, only a small proportion of particles fall down from the outlets and the erosion rate levels off to zero gradually. Parametric studies show that the increase of hydraulic gradient increase the eroded particle mass. The number of erosion particles from the bottom layer is much larger than those from the upper layers as more fine particles in the upper layers are locked.
Introduction: Construction joint is common and even inevitable in most of the reinforcement concrete structures. This study was to assess the effect of construction joints on chloride-induced corrosion of reinforcing steel in concrete.Methods: Test parameters included two environmental conditions (salt solution immersion condition and cyclic wet-dry condition), two forms of construction joint (direct wet joint and roughened wet joint) and four types of steel bar (mild steel bar, ferritic stainless-steel bar, austenitic-ferritic stainless-steel bar and epoxy-coated steel bar). The corrosion test of 90 specimens was carried out by electrochemical accelerated corrosion method. The weight loss of each steel bar and steel bar section in specimens was measured. An influence coefficient (k_j) of construction joint on local weigh loss of steel bars was defined.Results: Except for epoxy-coated steel bars, the most severe corrosion of experimental steel bars in concrete specimens all occurred at the joints, while the corrosion in non-joint sections of steel bars was relatively uniform and less. The weight loss rate of specimens has the range of 1.18% to 15.73% with an average value of 6.22%. The average k_j of mild steel bars, S11203 stainless steel bars, and S23043 stainless steel bars are 1.38, 1.92, and 1.97, respectively. The average k_j of specimens in immersion condition and cyclic wet-dry condition are 1.44 and 2.07. The corrosion of epoxy-coated steel bars mainly occurred at the damage locations of epoxy coating, not mainly at the joints.Conclusion: Chloride-induced corrosion of steel bars at construction joints was always more severe than at non-joints, especially in cyclic wet-dry environments, even for stainless-steel bar, but epoxy-coated steel bars were excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.