Context:
Screening for malaria and coronavirus disease (COVID-19) in all patients with acute febrile illness is necessary in malaria-endemic areas to reduce malaria-related mortality and to prevent the transmission of COVID-19 by isolation.
Aims:
A pilot study was undertaken to determine the incidence of SARS-CoV-2 infection among febrile patients attending a malaria clinic.
Subjects and Methods:
All patients were tested for malaria parasite by examining thick and thin blood smears as well as by rapid malaria antigen tests. COVID-19 was detected by rapid antigen test and reverse transcriptase–polymerase chain reaction in patients agreeing to undergo the test.
Results:
Out of 262 patients examined, 66 (25.19%) were positive for
Plasmodium vivax
, 45 (17.17%) for
Plasmodium falciparum
(Pf) with a slide positivity rate of 42.40%, and Pf% of 40.50%. Only 29 patients consented for COVID-19 testing along with malaria; of them, 3 (10.34%) were positive for COVID-19 alone and 2 (6.89%) were positive for both COVID-19 and
P. vivax
with an incidence of 17.24%. A maximum number of patients (196) did not examine for COVID-19 as they did not agree to do the test.
Conclusion:
Diagnosis of COVID-19 among three patients (10.34%) is significant both in terms of identification of cases and to isolate them for preventing transmission in the community. Detection of COVID-19 along with malaria is equally important for their proper management.
With increasing demand for large numbers of testing during the coronavirus disease 2019 pandemic, alternative protocols were developed with shortened turn-around time. We evaluated the performance of such a protocol wherein 1138 consecutive clinic attendees were enrolled; 584 and 554 respectively from two independent study sites in the cities of Pune and Kolkata. Paired nasopharyngeal and oropharyngeal swabs were tested by using both reference and index methods in a blinded fashion. Prior to conducting real-time polymerase chain reaction, swabs collected in viral transport medium (VTM) were processed for RNA extraction (reference method) and swabs collected in a dry tube without VTM were incubated in Tris–EDTA–proteinase K buffer for 30 min and heat-inactivated at 98 °C for 6 min (index method). Overall sensitivity and specificity of the index method were 78.9% (95% confidence interval (CI) 71–86) and 99% (95% CI 98–99.6), respectively. Agreement between the index and reference method was 96.8% (k = 0.83, s.e. = 0.03). The reference method exhibited an enhanced detection of viral genes (E, N and RNA-dependent RNA polymerase) with lower Ct values compared to the index method. The index method can be used for detecting severe acute respiratory syndrome corona virus-2 infection with an appropriately chosen primer–probe set and heat treatment approach in pressing time; low sensitivity constrains its potential wider use.
Multiple waves of infection were observed in many states in India during the coronavirus disease 2019 (COVID19) pandemic. Fine-scale evolution of major SARS-CoV-2 lineages and sublineages during four wave-window categories: Pre-Wave 1, Wave 1, Pre-Wave 2, and Wave 2 in four major states of India: Delhi (North), Maharashtra (West), Karnataka (South), and West Bengal (East) was studied using large-scale virus genome sequencing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.