The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe, 1T-TaS and 1T-TiSe exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
We investigated thermal properties of the epoxy-based composites with a high loading fractionup to ≈ 45 vol. % -of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that both types of the composites revealed a distinctive thermal percolation threshold at the loading fraction > 20 vol. %. The graphene loading required for achieving the thermal percolation, , was substantially higher than the loading, , for the electrical percolation. Graphene fillers outperformed boron nitride fillers in the thermal conductivity enhancement. It was established that thermal transport in composites with the high filler loading, ≥ , is dominated by heat conduction via the network of percolating fillers. Unexpectedly, we determined that the thermal transport properties of the high loading composites were influenced strongly by the cross-plane thermal conductivity of the quasi-twodimensional fillers. The obtained results shed light on the debated mechanism of the thermal × Contributed equally to the work. * Corresponding author (A.A.B.): balandin@ece.ucr.edu ; web-site: http://balandingroup.ucr.edu/ Thermal Percolation Threshold and Thermal Properties of Composites with Graphene and Boron Nitride Fillers, UCR (2018) 2 | P a g e percolation, and facilitate the development of the next generation of the efficient thermal interface materials for electronic applications. Main TextThe discovery of unique heat conduction properties of graphene 1-7 motivated numerous practically oriented studies of the use of graphene and few-layer graphene (FLG) in various composites, thermal interface materials and coatings [8][9][10][11][12][13][14][15] . The intrinsic thermal conductivity of large graphene layers exceeds that of the high-quality bulk graphite, which by itself is very high -2000 Wm −1 K −1 at room temperature (RT) 1,11,16,17 . The first studies of graphene composites found that even a small loading fractions of randomly oriented graphene fillers -up to = 10 vol. %can increase the thermal conductivity of epoxy composites by up to a factor of ×25 [Ref. 11]. These results have been independently confirmed by different research groups 18,19 . The variations in the reported thermal data for graphene composites can be explained by the differences in the methods of preparation, matrix materials, quality of graphene, lateral sizes and thickness of graphene fillers and other factors 3,20-25 . Most of the studies of thermal composites with graphene were limited to the relatively low loading fractions, ≤ 10 vol. %. The latter was due to difficulties in preparation of high-loading fraction composites with a uniform dispersion of graphene flakes. The changes in viscosity and graphene flake agglomeration complicated synthesis of the consistent set of samples with the loading substantially above = 10 vol. %.Investigation of thermal properties of composites with the high loading fraction of graphene or FLG fillers is interesting from both fundamental science and practical applicat...
We report on switching among three charge-density-wave phases -commensurate, nearly commensurate, incommensurate -and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 K to 600 K. Analysis of the experimental data and calculations of heat dissipation suggest that Joule heating plays a dominant role in the electric-field induced transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The possibility of electrical switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in materials. Keywords: charge-density-wave effects; van der Waals materials; resistive switching, lowfrequency noise, 1T-TaS2; normal metallic phase Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in 1T-TaS2 Thin-Film Devices -UC Riverside 2019 3 | P a g eSwitching between various material phases at room temperature by the application of electric field has the potential of becoming a new device paradigm for future electronic and optoelectronic technologies 1-4 . Among the promising material candidates, which must exhibit phase changes characterized by abrupt resistivity changes and hysteresis, is the 1T polymorph of tantalum disulfide (TaS2). The quasi-two-dimensional (2D) van der Waals layered crystalline 1T-TaS2 exhibits charge-density-wave (CDW) effects, i.e. periodic modulation of the charge density and the underlying lattice resulting from the interplay between the electron-electron and electronphonon interactions [5][6][7][8][9][10][11][12][13]14 . The CDW state becomes fully commensurate with the lattice below ~200 K 15-17 . The commensurate CDW (C-CDW) consists of a √13 × √13 reconstruction within the basal plane that forms a star-of-David pattern in which each star contains 13 Ta atoms. The Fermi surface, composed of 1 d-electron per star, is unstable, so that the lattice reconstruction is accompanied by a Mott-Hubbard transition that fully gaps the Fermi surface and increases the resistance 15,18-21 . As the temperature increases above 180 K, the C-CDW phase breaks up into a nearly commensurate CDW (NC-CDW) phase that consists of ordered C-CDW regions separated by domain walls 22 . This C-CDW to NC-CDW transition is revealed as an abrupt change in the resistance with a large hysteresis window i...
We report the results of ultraviolet Raman spectroscopy of NiO, which allowed us to determine the spin-phonon coupling coefficients in this important antiferromagnetic material. The use of the second-order phonon scattering and ultraviolet laser excitation (k ¼ 325 nm) was essential for overcoming the problem of the optical selection rules and dominance of the two-magnon band in the visible Raman spectrum of NiO. We established that the spins of Ni atoms interact more strongly with the longitudinal than transverse optical phonons and produce opposite effects on the phonon energies. The peculiarities of the spin-phonon coupling are consistent with the trends given by density functional theory. The obtained results shed light on the nature of the spin-phonon coupling in antiferromagnetic insulators and can help in developing spintronic devices.
Similar to electron waves, the phonon states in semiconductors can undergo changes induced by external boundaries. However, despite strong scientific and practical importance, conclusive experimental evidence of confined acoustic phonon polarization branches in individual free-standing nanostructures is lacking. Here we report results of Brillouin—Mandelstam light scattering spectroscopy, which reveal multiple (up to ten) confined acoustic phonon polarization branches in GaAs nanowires with a diameter as large as 128 nm, at a length scale that exceeds the grey phonon mean-free path in this material by almost an order-of-magnitude. The dispersion modification and energy scaling with diameter in individual nanowires are in excellent agreement with theory. The phonon confinement effects result in a decrease in the phonon group velocity along the nanowire axis and changes in the phonon density of states. The obtained results can lead to more efficient nanoscale control of acoustic phonons, with benefits for nanoelectronic, thermoelectric and spintronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.