Herbal medicines are attracting the attention of researchers worldwide. β-Eudesmol is one of the most studied and major bioactive sesquiterpenes, mainly extracted from Atractylodes lancea (Thunb) DC. rhizomes. It has potential anti-tumor and antiangiogenic activities and is an inhibitor of tumor growth by inhibiting angiogenesis by suppressing CREB activation of the growth factor signaling pathway. It also stimulates neurite outgrowth in rat pheochromocytoma cells with activation of mitogen-activated protein kinases. It may be a promising lead compound for enhancing neural function, and it may help to explain the underlying mechanisms of neural differentiation. In this review, we summarized the currently available clinical and preclinical studies describing the therapeutic applications of β-eudesmol.
Objectives The effects of atractylodin (ATD), the bioactive compound from Atractylodes lancea, on migration and autophagy status of cholangiocarcinoma cell line were investigated. Methods Cytotoxic activity and effects on cell migration and invasion were evaluated by MTT and trans-well assay, respectively. Autophagy and underlying molecular mechanisms were investigated using flow cytometry and western blot analysis. Key findings ATD regulated the activity of PI3K/AKT/mTOR and p38MAPK signalling pathways which contributed to autophagy induction. HuCCT-1 cell growth was inhibited by ATD in a time- and dose-dependent manner. ATD inhibited the migration and invasion of HuCCT1 cells in a concentration-dependent manner. It also induced autophagy in HuCCT1 cells in a time- and dose-dependent manner. The SB202190 (autophagy inducer) and 3-MA (autophagy inhibitor) significantly increased and decreased the rate of ATD-induced autophagy, respectively. The 24 h exposure of ATD inhibited the phosphorylation of phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (p38MAPK) and increased Beclin-1 expression and LC3 conversion. It also reduced p-AKT/AKT, p-mTOR/mTOR and p-p38MAPK/p38MAPK. Conclusions ATD inhibits the proliferation and induces CCA cell autophagy via regulating PI3K/AKT/mTOR and p38MAPK signalling pathways.
Dengue virus (DENV) causes asymptomatic to severe life-threatening infections and affects millions of people worldwide. Autophagy, a cellular degradative pathway, has both proviral and antiviral functions. Dengue virus triggers the autophagy pathway for the successful replication of its genome. However, the exact mechanism and the viral factors involved in activating this pathway remain unclear. This review summarizes the existing knowledge on the mechanism of autophagy induction and its significance during DENV infection.
The contamination of groundwater by arsenic is one of the major problems in Nepal. This study was conducted in 20 deep groundwater (>200m) samples of Kathmandu valley to assess the arsenic content of different groundwater zones and to determine the relationship of arsenic with physico-chemical parameters. Samples were collected in the post-monsoon season of 2016. The random sampling method was applied to the collection of water samples.Standard methods as APHA 2005 was followed for the analysis of the water sample.Arsenic concentration showed spatial variation. The maximum concentration of arsenic was found in Central Groundwater Zone at Patan (27040’07.3” and 85019’14”). Karl Pearson’s correlation coefficient revealed that moderate positive correlation of arsenic concentration withelectrical conductivity (μS/cm) (r = 0.58and p =0.01) and turbidity (NTU)(r = 0.67 and p = 0.01). Groundwater consumers of the central zone of the valley are at risk of arsenic-based health issues.
Background: Cholangiocarcinoma (CCA) is a highly aggressive tumor with a greater risk of distant metastasis. A drug that prevents CCA development and spread is urgently needed. In this research, we investigated the effect of β-eudesmol on the migration and invasion and epithelial-mesenchymal transformation (EMT) of the CCA cell line. Materials and Methods: MTT and transwell assays were used to investigate the antiproliferative activity, as well as activity on cell migration and cell invasion. Real-time PCR and western blot analysis were used to investigate the expression of EMT marker genes and proteins. Results: β-eudesmol was shown to exhibit potent antiproliferative activity (IC 50 92.25-185.67 µM) and to significantly reduce CCA cell migration and invasion (27.3-62.7%). At both mRNA and protein levels, it significantly up-regulated the expression of epithelial marker E-cadherin (3-3.4-fold), while down-regulated the expression of mesenchymal markers-vimentin (0.6-0.8-fold) and snail-1 (0.4-0.6-fold). Furthermore, β-eudesmol inhibited PI3K and AKT phosphorylation (0.5-0.8-fold), while activating p38MAPK activity (1.2-3.6-fold). Conclusion: Altogether, the anti-metastatic activity of β-eudesmol might be due to its suppressive effect on EMT via modulating the PI3K/AKT and p38MAPK signaling cascades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.