Background Limnophila rugosa (Scrophulariaceae) is a perennial aquatic plant used as a diuretic and digestive tonic as well as in the treatment of diarrhea, dysentery, dyspepsia and urinary ailments. Genus Limnophila has been reported as hepatoprotective. The present study was undertaken to evaluate the hepatoprotective activity of the ethanolic extract of L. rugosa aerial part in paracetamol- and carbon tetrachloride-induced (CCl4) hepatotoxicity in albino Wistar rats. Ethanolic extract was subjected to high-performance liquid chromatography (HPLC) analysis for the estimation of phenolic and flavonoid compounds and gas chromatography–mass spectrometry (GC–MS) analysis for phytochemical analysis. The in vitro antioxidant activity was carried out by 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical and hydrogen peroxide assay. Hepatoprotective potential of L. rugosa was studied in paracetamol (750 mg/mg)- and CCl4 (1.25 ml/kg)-induced liver damage in albino rats at dose 200 and 300 mg/kg using silymarin (100 mg/kg) as standard. Lipid peroxidation, superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were determined in liver tissue homogenate. Serum biochemical and histopathological examination was performed. Molecular docking analysis was performed to understand the molecular mechanism of hepatoprotective activity. Results HPLC analysis revealed predominance of rutin. GC–MS analysis revealed camphor as principal component. Ethanolic extract exhibited significant concentration-dependent scavenging efficacy. The altered biochemical chemical parameters: aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, albumin, globulin and total protein, were significantly improved at 200 and 300 mg/kg in experimental rats. Extract signified hepatoprotective by decreasing lipid peroxidation and upregulating SOD, CAT and GSH. The findings were well supported by histological analysis. 2-Butyl-2, 7-octadien-1-ol (-5.8) and camphor (-4.8) gave the highest docking score on the transforming growth factor-β1. Conclusions The ameliorative effect of L. rugosa in the rat model of hepatotoxicity could be attributed to its antioxidant potential and bioactive principles such as betulin, 5-hydroxy-6,7,4′-trimethoxyflavone (salvigenin), betulinic acid, ursolic acid, 3-octanol, acetophenone, anisylacetone, caryophyllene, cis-anethole and the compounds camphor and 2-butyl-2,7-octadien-1-ol identified from GC–MS analysis.
A plant regeneration protocol via adventitious shoot organogenesis from internode explants of Paederia foetida (Skunk vine) is reported here for the first time. Three explants (leaf, mature internode and internode derived from axenic shoot cultures) were tested for shoot organogenesis. Leaf explants failed to induce adventitious shoots whereas axenic internode explant was found to be superior to mature internode explants for the induction of adventitious shoots. Axenic internode explants cultured on MS medium supplemented with 3.0 mg/l BAP showed maximum (86.7 %; 10.4 shoots per explant) adventitious shoot organogenesis. The regenerated shoots were best rooted (90 %; 14 roots per shoot) on half-strength MS medium. Eighty percent of the rooted shoots were successfully acclimatized in soil: sand (1:1) mixture. All these acclimatized plants were successfully transferred to larger pots containing garden soil and subsequently established in the field.
Capparis zeylanica (Capparaceae) is a climbing shrub, commonly known as ‘Asadua’ in Oriya language. Folkloric it is used as anti-inflammatory, anti-rheumatic, hepatitis and liver tonics. The present work aimed to investigate the hepatoprotective activity of Capparis zeylanica root. The ethanolic extract was subjected to GC-MS analysis and quantification of rutin, quercetin and gallic acid by HPLC. In vitro antioxidant study was evaluated by DPPH, nitric oxide radical and hydrogen peroxide assay. Hepatoprotective activity was performed by CCl4 (1.25 ml/kg, I.P) induced Wistar albino rats at dose of 200 and 300 mg/kg using silymarin (100 mg/kg) as standard. The liver tissue homogenate was examined for lipid peroxidation, SOD, CAT and GSH assay. Serum was taken for biochemical analysis and liver for histopathological study. In silico molecular docking study was performed by the indentified compounds. Gallic acid was quantified as highest in HPLC analysis. Fifty compounds were identified by GC-MS analysis. The extract exhibited significant free radical scavenging effect at highest concentration. The level of liver function enzymes (AST, ALT and ALP), bilirubin and protein were significantly improved after the administration of 200 and 300 mg/kg of extract. Alterations in SOD, CAT, GSH and lipid peroxidation levels were significantly checked by extract. Compounds propane, 1, 1-dipropoxy- (-5.2); cis-9-hexadecenal (-6.0); 17-octadecen-14-yn-1-ol (-6.0); 6-butyl-1,4-cycloheptadiene (-6.5) exhibited greater docking score as compared to standard silymarin (-5.1). The hepatoprotective potential of C. zeylanica could be due to its antioxidant effect and the synergistic effect of these compounds.
Paederia foetida L. is an important medicinal plant that has been used for the treatment of various gastrointestinal related ailments by different tribal communities in India. This plant is also known for its use as a food. Due to overexploitation, P. foetida has been classified as a vulnerable plant in some states of India. The propagation of P. foetida by conventional methods is easy but very slow. Synthetic seed technology offers incredible potential for in vitro propagation of threatened and commercially valuable plants, and can also facilitate the storage and exchange of axenic plant material between laboratories. However, synthetic seed production for P. foetida has not yet been reported. Thus, to the best of our knowledge, the present study is the first attempt to produce synthetic seeds of P. foetida by calcium alginate encapsulation of in vitro regenerated axenic nodal segments. Sodium alginate (3%) and CaCl 2 (100 mM) were found to be the optimal materials for the preparation of ideal synthetic seeds, both in terms of morphology and germination ability. The synthetic seeds showed the best germination (formation of both shoot as well as root; 83.3%) on ½ MS medium augmented with 0.5 mg/L indole-3-acetic acid. The plantlets obtained from these synthetic seeds could be successfully acclimatized under field conditions. We also studied the storage of these synthetic seeds at low temperature and their subsequent sprouting/germination. The seeds showed a germination rate of 63.3% even after 21 days of storage at 4 °C; thus, they could be useful for transfer and exchange of P. foetida germplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.