Biofilms are bacterial communities consisting of numerous extracellular polymeric substances. Infections caused by biofilm-forming bacteria are considered to be a major threat to health security and so novel approaches to control biofilm are of importance. Aptamers are single-strand nucleic acid molecules that have high selectivity to their targets. Single-walled carbon nanotubes (SWNTs) are common nanomaterials and have been shown to be toxic to bacterial biofilms. The aim of this study was to test whether an aptamer could play a role as targeting agents to enhance the efficiency of anti-biofilm agents. Hence, two complexes (aptamer-SWNTs and aptamer-ciprofloxacin-SWNTs) based on an aptamer which targets Pseudomonas aeruginosa and SWNTs were constructed. Both complexes were assessed against P. aeruginosa biofilms. In vitro tests demonstrated that the aptamer-SWNTs could inhibit ~36% more biofilm formation than SWNTs alone. Similarly, the aptamer-ciprofloxacin-SWNTs had a higher anti-biofilm efficiency than either component or simple mixtures of two components. Our study underscores the potential of aptamers as targeting agents for anti-biofilm compounds, as well as providing a new strategy to control biofilms.
Biofilms are the main reason for a large number deaths and high health costs. Their better protection compared to planktonic form against conventional antibiotics leads to poor treatment efficiency. Nanoagent-targeted delivery is a promising avenue for disease therapeutic, but its application targeting biofilms has not been reported currently. The roles, if any, of aptamers acting as delivery carrier and targeting factor, the graphene oxide (GO), and GO modified with aptamers against biofilms were then systematically evaluated. Here, we successfully developed an aptamer-targeted GO strategy against biofilms. We investigated the efficacy of aptamer-GO conjugates by UV spectrophotometer, inverted microscopy, and atomic force microscopy; 93.5 ± 3.4% Salmonella typhimurium biofilms were inhibited and 84.6 ± 5.1% of biofilms were dispersed by a ST-3-GO conjugate. More importantly, this conjugate represented distinctively toxicity to S. typhimurium. Thus, this strategy significantly displays excellent antibiofilm properties and may serve as a long-term solution for biofilm control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.