BackgroundNumerous treatment methods for osteochondral repair have been implemented, including auto- and allogeneic osteochondral transplantations, combined bone and chondrocyte transplantations, and synthetic implants, but no gold standard treatment has been established. We present preliminary data on a combined autologous bone and cartilage chips: autologous dual-tissue transplantation (ADTT); an easily applicable, low-cost treatment option for osteochondral repair. The aim of this study was to investigate the early biological and clinical outcome of ADTT.MaterialsEight patients (age 32 ± 7.5 years) suffering from osteochondritis dissecans (OCD) in the knee were enrolled. The OCD lesion was debrided and the osteochondral defect was filled with autologous bone, to a level at the base of the adjacent cartilage. Cartilage biopsies from the intercondylar notch were chipped and embedded within fibrin glue in the defect. Evaluation was performed using magnetic resonance imaging, computed tomography, and clinical scores, preoperative and 1 year postoperative.ResultsCartilage tissue repair evaluated using MOCART score improved from 22.5 to 52.5 (P < 0.01). Computed tomography imaging demonstrated very good subchondral bone healing with all 8 patients having a bone filling of >80%. We found improvements 1 year postoperative in the International Knee Documentation Committee score (from 35.9 to 68.1, P < 0.01), Tegner score (from 2.6 to 4.7, P < 0.05), and Knee injury and Osteoarthritis Outcome Score pain, symptoms, sport/recreation and quality of life (P < 0.05).ConclusionTreatment of OCD with ADTT resulted in very good subchondral bone restoration and good cartilage repair. Significant improvements in patient reported outcome was found at 1 year postoperative. This study suggests ADTT as a promising, low-cost, treatment option for osteochondral injuries.
The NSP-PCL scaffold demonstrated higher in vitro expression of chondrogenic markers and had higher in vivo histological scores compared to the Chondro-Gide scaffold. The improved chondrocytic differentiation can potentially produce more hyaline cartilage during clinical cartilage repair. It appears to be a suitable cell-free implant for hyaline cartilage repair and could provide a less costly and more effective treatment option than the Chondro-Gide scaffold with cells.
BackgroundA gold standard treatment for articular cartilage injuries is yet to be found, and a cost-effective and predictable large animal model is needed to bridge the gap between in vitro studies and clinical studies.Ideally, the animal model should allow for testing of clinically relevant treatments and the biological response should be reproducible and comparable to humans. This allows for a reliable translation of results to clinical studies.This study aimed at verifying the Göttingen minipig as a pre-clinical model for articular cartilage repair by testing existing clinical cartilage repair techniques and evaluating the use of two defects per knee.MethodsSixteen fully mature Göttingen minipigs were used. The minipigs received bilateral trochlear osteochondral drill-hole defects or chondral defects (Ø 6 mm), either one defect per knee or two defects per knee. The defects were treated with one of the following: Matrix-induced autologous chondrocyte implantation (MACI), microfracture (MFx), autologous-dual-tissue transplantation (ADTT), autologous bone graft, autologous cartilage chips. Empty chondral and osteochondral defects were used as controls. MRI and CT were performed 3 and 6 month, histology was performed 6 month postoperative.ResultsThe repair tissue varied in morphology from non-cartilaginous fibrous tissue to fibrocartilaginous tissue as seen on MRI, CT and histology at 6 month. The worst results were seen in the empty controls, while the best results were achieved with the MACI and ADTT treatment. The use of two defects per knee did not have any significant effect on the repair response.ConclusionThe outcomes of the applied treatments were consistent with the outcomes in clinical studies and it was possible to apply two defects per knee. The Göttingen minipig model was easy to handle, cost-effective and provided predictable outcome. Based on this study the use of two defects per knee, one in the medial and one in the lateral trochlear facet, in male Göttingen minipigs is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.