There is growing evidence that soy protein improves the blood lipid profiles of animals and humans. We compared the effects of fish protein hydrolysate (FPH), soy protein, and casein (control) on lipid metabolism in Wistar rats and genetically obese Zucker (fa/fa) rats. In Zucker rats, FPH treatment affected the fatty acid composition in liver, plasma, and triacylglycerol-rich lipoproteins. The mRNA levels of Delta 5 and Delta 6 desaturases were reduced by FPH and soy protein feeding compared with casein feeding. In Zucker rats both FPH and soy protein treatment reduced the plasma cholesterol level. Furthermore, the HDL cholesterol:total cholesterol ratio was greater in these rats and in the Wistar rats fed FPH and soy protein compared with those fed casein. Although fecal total bile acids were greater in soy protein-fed Zucker rats than in casein-fed controls, those fed FPH did not differ from the controls. However, the acyl-CoA:cholesterol acyltransferase activity was reduced in Zucker rats fed FPH and tended to be lower (P = 0.13) in those fed soy protein compared with those fed casein. Low ratios of methionine to glycine and lysine to arginine in the FPH and soy protein diets, compared with the casein diet, may be involved in lowering the plasma cholesterol concentration. Our results indicate that the effects of FPH and soy protein on fatty acid metabolism are similar in many respects, but the hypocholesterolemic effects of FPH and soy protein appear to be due to different mechanisms. FPH may have a role as a cardioprotective nutrient.
The effect of n-6 polyunsaturated fatty acids (n-6 PUFAs) on adipogenesis and obesity is controversial. Using in vitro cell culture models, we show that n-6 PUFAs was pro-adipogenic under conditions with base-line levels of cAMP, but anti-adipogenic when the levels of cAMP were elevated. The anti-adipogenic action of n-6 PUFAs was dependent on a cAMP-dependent protein kinase-mediated induction of cyclooxygenase expression and activity. We show that n-6 PUFAs were pro-adipogenic when combined with a high carbohydrate diet, but non-adipogenic when combined with a high protein diet in mice. The high protein diet increased the glucagon/insulin ratio, leading to elevated cAMP-dependent signaling and induction of cyclooxygenase-mediated prostaglandin synthesis. Mice fed the high protein diet had a markedly lower feed efficiency than mice fed the high carbohydrate diet. Yet, oxygen consumption and apparent heat production were similar. Mice on a high protein diet had increased hepatic expression of PGC-1alpha (peroxisome proliferator-activated receptor gamma coactivator 1alpha) and genes involved in energy-demanding processes like urea synthesis and gluconeogenesis. We conclude that cAMP signaling is pivotal in regulating the adipogenic effect of n-6 PUFAs and that diet-induced differences in cAMP levels may explain the ability of n-6 PUFAs to either enhance or counteract adipogenesis and obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.