Brain-computer interfaces and neural prostheses based on the detection of electrocorticography (ECoG) signals are rapidly growing fields of research. Several technologies are currently competing to be the first to reach the market; however, none of them fulfil yet all the requirements of the ideal interface with neurons. Thanks to its biocompatibility, low dimensionality, mechanical flexibility and electronic properties, graphene is one of the most promising material candidates for neural interfacing. After discussing the operation of graphene solution-gated field-effect transistors (SGFET) and characterizing their performance in saline solution, we report here that this technology is suitable for μ-ECoG recordings through the studies of spontaneous slow wave activity, sensory evoked responses on the visual and auditory cortices, and synchronous activity in a rat model of epilepsy. An in depth comparison of the signal-to-noise ratio of graphene SGFETs with that of platinum black electrodes confirms that graphene SGFET technology is approaching the performance of state-of-the art neural technologies.
The supratemporal sources of the earliest auditory cortical responses (20-80 ms) were identified using simultaneously recorded electroencephalographic (EEG) and magnetoencephalographic (MEG) data. Both hemispheres of six subjects were recorded two or three times in different sessions in response to 8000 right-ear 1 kHz pure tones stimuli. Four components were identified: Pa (28 ms), Nb (40 ms), and two subcomponents of the Pb complex, termed Pb1 (52 ms) and Pb2 (74 ms). Based on MEG data, the corresponding sources were localized on the anatomy using individual realistic head models: Pa in the medial portion of Heschl's gyri (H1/H2); Nb/Pb1 in the lateral aspect of the supratemporal gyrus (STG); and Pb2 in the antero-lateral portion of Heschl's gyri. All sources were oriented antero-superiorly. This pattern was clearest in the contralateral hemisphere, where these three activities could be statistically dissociated. Results agree with previous invasive human intracerebral recordings, with animal studies reporting secondary areas involved in the generation of middle latency auditory-evoked components, and with positron emission tomography and functional magnetic resonance imaging studies often reporting these three active areas although without temporal information. The early STG activity may be attributed to parallel thalamo-cortical connections, or to cortico-cortical connections between the primary auditory cortex and the STG, as recently described in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.