Background: Although dual-energy x-ray absorptiometry (DXA) assessed areal bone density (aBMD) is the clinical standard for determining fracture risk, the majority of older adults who sustain a fracture do not have osteoporosis (T-score < −2.5). Importantly, bone fragility results not only from low BMD, but also from deterioration in bone structure. We used high-resolution peripheral quantitative computed tomography (HR-pQCT) data from eight cohorts to evaluate whether HR-pQCT indices were associated with fracture risk independently of femoral neck (FN) aBMD and FRAX (Fracture Risk Assessment Tool) score. Methods: Participants included 7,254 individuals (66% women) from cohorts in the USA (Framingham, Mayo Clinic), France (QUALYOR, STRAMBO, OFELY), Switzerland (GERICO), Canada (CaMos), and Sweden (MrOS). We used Cox proportional hazards models to estimate hazards ratios (HRs) for the association between bone parameters (per standard deviation, SD, deficit) and incident fracture, adjusting for age, sex, height, weight and cohort. Findings: Mean baseline age was 69 (±9) years (range, 40 to 96). Cumulative incidence of fracture was 11% (n=765) over a mean follow-up time of 4.6 (± 2.4) years. The majority of participants (92%) had a femoral neck T-score >−2.5, and thus did not meet diagnostic criteria for osteoporosis. Failure load was the bone measure most strongly associated with risk of fracture: tibia HR=2.40 (1.98-2.91), radius HR=2.13 (1.77-2.56), per SD decrease in failure load. HRs for other bone indices ranged from HR=1.12 (1.03-1.23) per SD increase in tibia cortical porosity to HR=1.58 (1.45-1.72) per SD decrease in radius trabecular volumetric bone density (vBMD). After further adjustment for FN aBMD or FRAX, HRs were attenuated, but most bone parameters remained significantly associated with fracture. Cortical density, trabecular number, and trabecular thickness at the distal radius were the best set of predictors of fracture; while the same indices plus cortical area were identified for the tibia. These HR-pQCT indices and failure load improved prediction of fracture, beyond FN aBMD alone or FRAX. Interpretation: Results from this large international cohort of women and men confirm prior studies showing that deficits in trabecular and cortical bone density and structure contribute to fracture risk independently of aBMD and FRAX. Measurements of cortical and trabecular bone density and morphology at the peripheral skeleton may improve identification of those at highest risk for fracture. Funding: National Institutes of Health, National Institute of Arthritis Musculoskeletal and Skin Diseases, R01AR061445
Type I collagen, the major organic component of bone matrix, undergoes a series of post-translational modifications that occur with aging, such as the non-enzymatic glycation. This spontaneous reaction leads to the formation of advanced glycation end products (AGEs), which accumulate in bone tissue and affect its structural and mechanical properties. We have investigated the role of matrix AGEs on bone resorption mediated by mature osteoclasts and the effects of exogenous AGEs on osteoclastogenesis. Using in vitro resorption assays performed on control-and AGE-modified bone and ivory slices, we showed that the resorption process was markedly inhibited when mature osteoclasts were seeded on slices containing matrix pentosidine, a well characterized AGE. More specifically, the total area resorbed per slice, and the area degraded per resorption lacuna created by osteoclasts, were significantly decreased in AGE-containing slices. This inhibition of bone resorption was confirmed by a marked reduction of the release of type I collagen fragments generated by the collagenolytic enzymes secreted by osteoclasts in the culture medium of AGE-modified mineralized matrices. This effect is likely to result from decreased solubility of collagen molecules in the presence of AGEs, as documented by the reduction of pepsin-mediated digestion of AGE-containing collagen. We found that AGE-modified BSA totally inhibited osteoclastogenesis in vitro, most likely by impairing the commitment of osteoclast progenitors into pre-osteoclastic cells. Although the mechanisms remain unknown, AGEs might interfere with osteoclastic differentiation and activity through their interaction with specific cell-surface receptors, because we showed that both osteoclast progenitors and mature osteoclasts expressed different AGEs receptors, including receptor for AGEs (RAGEs). These results suggest that AGEs decreased osteoclast-induced bone resorption, by altering not only the structural integrity of bone matrix proteins but also the osteoclastic differentiation process. We suggest that AGEs may play a role in the alterations of bone remodeling associated with aging and diabetes.Non-enzymatic glycation is a common post-translational modification of proteins induced by the spontaneous condensation of reducing sugars (e.g. glucose) and metabolic intermediates (e.g. triose phosphates, glyoxal, and methylglyoxal) with free amino groups in lysine or arginine residues. The early step of the so-called Maillard reaction is the formation of a Schiff base adduct to protein. This early glycation product undergoes a reversible rearrangement to form an Amadori product adduct to protein (i.e. an intermediate glycation product). Schiff bases and Amadori products then undergo a complex series of rearrangements, oxidations, and/or dehydrations along different chemical pathways to produce a class of irreversible adducts to proteins, the advanced glycation end products (AGEs) 3 (reviewed in Refs. 1 and 2). A direct consequence of these highly diverse reaction pathways leadin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.