Purpose: To compare the training-intensity distribution (TID) across an 8-week training period in a group of highly trained middle-distance runners employing 3 different methods of training-intensity quantification. Methods: A total of 14 highly trained middle-distance runners performed an incremental treadmill test to exhaustion to determine the heart rate (HR) and running speed corresponding to the ventilatory thresholds (gas-exchange threshold and respiratory-compensation threshold), as well as fixed rating of perceived exertion (RPE) values, which were used to demarcate 3 training-intensity zones. During the following 8 weeks, the TID (total and percentage of time spent in each training zone) of all running training sessions (N = 695) was quantified using continuous running speed, HR monitoring, and RPE. Results: Compared with the running-speed-derived TID (zone 1, 79.9% [7.3%]; zone 2, 5.3% [4.9%]; and zone 3, 14.7% [7.3%]), HR-demarcated TID (zone 1, 79.6% [7.2%]; zone 2, 17.0% [6.3%]; and zone 3, 3.4% [2.0%]) resulted in a substantially higher training time in zone 2 (effect size ± 95% confidence interval: −1.64 ± 0.53; P < .001) and lower training time in zone 3 (−1.59 ± 0.51; P < .001). RPE-derived TID (zone 1, 39.6% [8.4%]; zone 2, 31.9% [8.7%]; and zone 3, 28.5% [11.6%]) reduced time in zone 1 compared with both HR (−5.64 ± 1.40; P < .001) and running speed (−5.69 ± 1.9; P < .001), whereas time in RPE training zones 2 and 3 was substantially higher than both HR- and running-speed-derived zones. Conclusion: The results show that the method of training-intensity quantification substantially affects computation of TID.
Introduction The aim of this study was to determine whether muscle oxidative capacity is influenced by alterations in training volume in middle-distance runners. Methods Twenty-four highly trained middle-distance runners (n = 16 males; V˙O2peak = 73.3(4.3) mL·kg−1·min−1; n = 8 females, V˙O2peak = 63.2(3.4) mL·kg−1·min−1) completed 3 wk of normal training (NormTr), 3 wk of high-volume training (HVTr; a 10%, 20%, and 30% increase in training volume during each successive week from NormTr), and a 1-wk taper (TapTr; 55% exponential reduction in training volume from HVTr week 3). Before and immediately after each training period, the rate of recovery of muscle oxygen consumption (mV˙O2) of the gastrocnemius medialis was measured using near-infrared spectroscopy, with the rate constant indicating muscle oxidative capacity. Time to exhaustion (TTE) and V˙O2peak were determined during a maximal incremental treadmill test. Results Twelve subjects were classified as being functionally overreached (FOR) after HVTr (decreased running TTE and high perceived fatigue), whereas the other 12 subjects were classified as acutely fatigued (AF; no decrease in running TTE). The AF group demonstrated a significant increase in muscle oxidative capacity after HVTr (rate constant: 15.1% ± 9.7% min−1; P = 0.009), with no further improvement after TapTr, whereas there was no change in muscle oxidative capacity for FOR at any time point (P > 0.05). Compared with the FOR group, the AF group had substantially larger improvements in TTE from pre-HVTr to post-TapTr (FOR, 8.8% ± 3.7%; AF, 3.2% ± 3.0%; P = 0.04). Conclusion The present study was able to demonstrate that muscle oxidative capacity was increased in response to a period of HVTr, but only in runners who did not develop FOR. Furthermore, runners who did not develop FOR had substantially larger performance improvements after a taper period.
Purpose: The present study identified the physiological and performance characteristics that are deterministic during a maximal 1500-m time trial and in paced 1500-m time trials, with an all-out last lap. Methods: Thirtytwo trained middle-distance runners (n=21 male, VO2peak: 72.1±3.2; n=11, female, VO2peak: 61.2±3.7 mL•kg -1 •min -1 ) completed a 1500-m time trial in the fastest time possible (1500FAST) as well as a 1500MOD and 1500SLOW trial whereby mean speed was reduced during the 0-1100-m by 5% and 10%, respectively. Anaerobic speed reserve (ASR), running economy (RE), the velocity corresponding with VO2peak (VVO2peak), maximal sprint speed (MSS) and maximal accumulated oxygen deficit (MAOD) were determined during additional testing. Carnosine content was quantified by proton magnetic resonance spectroscopy in the gastrocnemius and expressed as a Zscore to estimate muscle fibre typology. Results: 1500FAST time was best explained by RE and VVO2peak in female runners (adjusted r 2 =0.80, P<0.001), in addition to the 0-1100-m speed relative to VVO2peak in male runners (adjusted r 2 =0.72, P<0.001). Runners with a higher gastrocnemius carnosine Z-score (i.e., higher estimated percentage of type II fibres) and greater MAOD, reduced their last lap time to a greater extent in the paced 1500m trials. Neither ASR nor MSS were associated with last lap time in the paced trials. Conclusion: These findings suggest that VVO2 peak and RE are key determinants of 1500-m running performance with a sustained pace from the start, while a higher carnosine Z-score and MAOD are more important for last lap speed in tactical 1500-m races.
Running on a treadmill is an activity that is novel to many people. Thus, a familiarisation period may be required before reliable and valid determinations of biomechanical parameters can be made. The current study investigated the time required for treadmill familiarisation under barefoot and shod running conditions. Twenty-six healthy men, who were inexperienced in treadmill running, were randomly allocated to run barefoot or shod for 20 minutes on a treadmill at a self-selected comfortable pace. Sagittal-plane kinematics for the ankle, knee and hip, and ground reaction force and spatio-temporal data were collected at two-minute intervals. For the barefoot condition, temporal differences were observed in peak hip flexion and peak knee flexion during swing. For the shod condition, temporal differences were observed for peak vertical ground reaction force. No temporal differences were observed after 8 minutes for either condition. Reliability analysis revealed high levels of consistency (ICC > 0.90) across all consecutive time-points for all dependent variables for both conditions after 8 minutes with the exception of maximal initial vertical ground reaction force loading rate. Participants in both barefoot and shod groups were therefore considered familiarised to treadmill running after 8 minutes.
Medicine & Science in Sports & Exercise ® Published ahead of Print contains articles in unedited manuscript form that have been peer reviewed and accepted for publication. This manuscript will undergo copyediting, page composition, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered that could affect the content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.