Endometriosis is a common condition associated with debilitating pelvic pain and infertility. A genome-wide association study meta-analysis, including 60,674 cases and 701,926 controls of European and East Asian descent, identified 42 genome-wide significant loci comprising 49 distinct association signals. Effect sizes were largest for stage III/IV disease, driven by *
Ancient DNA genome-wide analyses of Neolithic individuals from central and southern Europe indicate an overall population turnover pattern in which migrating farmers from Anatolia and the Near East largely replaced autochthonous Mesolithic hunter-gatherers. However, the genetic history of the Neolithic transition in areas lying north of the European Neolithic core region involved different levels of admixture with hunter-gatherers. Here we analyse genome-wide data of 17 individuals spanning from the Middle Neolithic to the Early Bronze Age (4300-1900 BCE) in order to assess the Neolithic transition in north-central Poland, and the local impacts of hunter-farmer contacts and Late Neolithic steppe migrations. We evaluate the influence of these on local populations and assess if and how they change through time, reporting evidence of recurrent hunter-farmer admixture over three millennia, and the co-existence of unadmixed hunter-gatherers as late as 4300 BCE. During the Late Neolithic we report the appearance of steppe ancestry, but on a lesser scale than previously described for other central European regions, with evidence of stronger affinities to hunter-gatherers than to steppe pastoralists. These results help understand the Neolithic palaeogenomics of another central European area, Kuyavia, and highlight the complexity of population interactions during those times.
Only very recently, has it been proposed that the hitherto existing Mycobacterium kansasii subtypes (I-VI) should be elevated, each, to a species rank. Consequently, the former M. kansasii subtypes have been denominated as Mycobacterium kansasii (former type I), Mycobacterium persicum (II), Mycobacterium pseudokansasii (III), Mycobacterium innocens (V), and Mycobacterium attenuatum (VI). The present work extends the recently published findings by using a three-pronged computational strategy, based on the alignment fraction-average nucleotide identity, genome-to-genome distance, and core-genome phylogeny, yet essentially independent and much larger sample, and thus delivers a more refined and complete picture of the M. kansasii complex. Furthermore, five canonical taxonomic markers were used, i.e., 16S rRNA, hsp65, rpoB, and tuf genes, as well as the 16S-23S rRNA intergenic spacer region (ITS). The three major methods produced highly concordant results, corroborating the view that each M. kansasii subtype does represent a distinct species. This work not only consolidates the position of five of the currently erected species, but also provides a description of the sixth one, i.e., Mycobacterium ostraviense sp. nov. to replace the former subtype IV. By showing a close genetic relatedness, a monophyletic origin, and overlapping phenotypes, our findings support the recognition of the M. kansasii complex (MKC), accommodating all M. kansasii-derived species and Mycobacterium gastri. None of the most commonly used taxonomic markers was shown to accurately distinguish all the MKC species. Likewise, no species-specific phenotypic characteristics were found allowing for species differentiation within the complex, except the non-photochromogenicity of M. gastri. To distinguish, most reliably, between the MKC species, and between M. kansasii and M. persicum in particular, whole-genome-based approaches should be applied. In the absence of clear differences in the distribution of the virulence-associated region of difference 1 genes among the M. kansasii-derived species, the pathogenic potential of each of these species can only be speculatively assessed based on their prevalence among the clinically relevant population. Large-scale molecular epidemiological studies Jagielski et al. Genomic Insights Into Mycobacterium kansasii Complex are needed to provide a better understanding of the clinical significance and pathobiology of the MKC species. The results of the in vitro drug susceptibility profiling emphasize the priority of rifampicin administration in the treatment of MKC-induced infections, while undermining the use of ethambutol, due to a high resistance to this drug.
The aim of the present study was to define the mtDNA variability of Polish population and to visualize the genetic relations between Poles. For the first time, the study of Polish population was conducted on such a large number of individuals (5852) representing administrative units of both levels of local administration in Poland (voivodeships and counties). Additionally, clustering was used as a method of population subdivision. Performed genetic analysis, included FST, MDS plot, AMOVA and SAMOVA. Haplogroups were classified and their geographical distribution was visualized using surface interpolation maps. Results of the present study showed that Poles are characterized by the main West Eurasian mtDNA haplogroups. Furthermore, the level of differentiation within the Polish population was quite low but the existing genetic differences could be explained well with geographic distances. This may lead to a conclusion that Poles can be considered as genetically homogenous but with slight differences, highlighted at the regional level. Some patterns of variability were observed and could be explained by the history of demographic processes in Poland such as resettlements and migrations of women or relatively weaker urbanisation and higher rural population retention of some regions.
In Poland storage of human biological samples takes place at most universities and scientific institutions conducting research projects in the field of biomedicine. The First International Biobanking Conference organized by the Ministry of Science and Higher Education in 2014 shed a light on the situation of Polish biobanking infrastructures. The country has around 40 large biorepositories, which store unique biological material such as whole brains, muscle fibers from patients with rare diseases, as well as thousands of samples from patients with lifestyle diseases. There are only two population-based biobanks working locally and several disease-oriented biobanks specializing mainly in oncological diseases. Consortium BBMRI.pl created plans for establishing a Polish Network of Biobanks, with national node which meets standards for biobanks and cooperation to guarantee development of biomedical sciences and international collaboration between Poland and other countries. The Polish network will enhance research activities, due to better visibility of samples and data that are stored in the national biobanking catalogue. However, it requires more than a comprehensive understanding of all benefits. The list of examples of benefits can be presented as follows: (i) a reduction of the duration and cost of clinical trials and subsequent time to market for anticancer drugs; (ii) more precise patient diagnosis and the associated impact on treatment and lower healthcare costs for providers, individuals, and the nation; (iii) improvements in research experiment time frames and data efficiencies; (iv) convergence to an industry standards for biospecimen quality; (v) optimization of capital infrastructure and IT technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.