Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. H uman respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are enveloped, nonsegmented, negative-stranded RNA viruses of the family Paramyxoviridae. They are, respectively, the first and second leading viral causes of severe acute lower respiratory tract infections in infants and children worldwide. RSV alone is responsible for an estimated 34 million annual pediatric cases of lower respiratory tract illness worldwide, with Ͼ3.5 million hospitalizations and 66,000 to 199,000 pediatric deaths, which occur predominantly in the developing world (1). Licensed vaccines or effective antiviral drugs are not available for either RSV or HPIV3. Experimental inactivated (RSV and HPIV3) and subunit (RSV) vaccines have been linked to vaccine-induced enhanced disease in young children (inactivated RSV) and experimental animals (subunit RSV and inactivated HPIV3) (2-4). In contrast, disease enhancement is not observed with live attenuated RSV strains or vectors expressing RSV antigens (5-7), indicating that suitably attenuated candidates are safe for immunization of infants and young children.A chimeric recombinant bovine-human PIV3 (rB/HPIV3) ( Fig. 1) has been under development as a replication-competent intranasal pediatric vaccine vector. The PIV3 genome is a negative-sense RNA of 15.5 kb that contains six genes in the order 3=-N (nucleoprotein)-P (phosphoprotein)-M (matrix protein)-F (fusion glycoprotein)...
Human respiratory syncytial virus (RSV) is an enveloped RNA virus that is the most important viral cause of acute pediatric lower respiratory tract illness worldwide, and lacks a vaccine or effective antiviral drug. The involvement of host factors in the RSV replicative cycle remains poorly characterized. A genome-wide siRNA screen in human lung epithelial A549 cells identified actin-related protein 2 (ARP2) as a host factor involved in RSV infection. ARP2 knockdown did not reduce RSV entry, and did not markedly reduce gene expression during the first 24 hr of infection, but decreased viral gene expression thereafter, an effect that appeared to be due to inhibition of viral spread to neighboring cells. Consistent with reduced spread, there was a 10-fold reduction in the release of infectious progeny virions in ARP2-depleted cells at 72 hr post-infection. In addition, we found that RSV infection induced filopodia formation and increased cell motility in A549 cells and that this phenotype was ARP2 dependent. Filopodia appeared to shuttle RSV to nearby uninfected cells, facilitating virus spread. Expression of the RSV F protein alone from a plasmid or heterologous viral vector in A549 cells induced filopodia, indicating a new role for the RSV F protein, driving filopodia induction and virus spread. Thus, this study identified roles for ARP2 and filopodia in RSV-induced cell motility, RSV production, and RSV cell-to-cell spread.
Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34°C/35°C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates.negative-strand RNA virus | respiratory syncytial virus | live attenuated vaccine | codon pair deoptimization | genetic stability T he availability and affordability of large-scale custom DNA synthesis opened the new field of synthetic biology (1). The combined approach of sequence design and synthetic biology allows the generation of DNA molecules with extensive targeted modifications. Synonymous genome recoding, in which one or more ORFs of a microbial pathogen are modified at the nucleotide level without affecting amino acid coding, currently is being widely evaluated to reduce pathogen fitness and create potential live attenuated vaccines, particularly for RNA viruses (reviewed in ref.2) (3-7). The main strategies for attenuation by synonymous genome recoding are codon deoptimization (CD), codon pair deoptimization (CPD), and increasing the dinucleotide CpG and UpA content (which is usually the result of CD and CPD) (2).The mechanisms of attenuation by these strategies are currently under intensive research. It has been suggested that the primary effect of CD and CPD is to reduce translation efficiency of pathogen mRNAs, thereby providing attenuation (8). Effects on mRNA stability also can be a factor (9). In addition, recent studies suggested that codon pa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.