The growth properties and antigenic relatedness of the CAN98-75 (CAN75) and the CAN97-83 (CAN83) human metapneumovirus (HMPV) strains, which represent the two distinct HMPV genetic lineages and exhibit 5 and 63% amino acid divergence in the fusion (F) and attachment (G) proteins, respectively, were investigated in vitro and in rodents and nonhuman primates. Both strains replicated to high titers (>6.0 log 10 ) in the upper respiratory tract of hamsters and to moderate titers (>3.6 log 10 ) in the lower respiratory tract. The two lineages exhibited 48% antigenic relatedness based on reciprocal cross-neutralization assay with postinfection hamster sera, and infection with each strain provided a high level of resistance to reinfection with the homologous or heterologous strain. Hamsters immunized with a recombinant human parainfluenza virus type 1 expressing the fusion F protein of the CAN83 strain developed a serum antibody response that efficiently neutralized virus from both lineages and were protected from challenge with either HMPV strain. This result indicates that the HMPV F protein is a major antigenic determinant that mediates extensive cross-lineage neutralization and protection. Both HMPV strains replicated to low titers in the upper and lower respiratory tracts of rhesus macaques but induced high levels of HMPV-neutralizing antibodies in serum effective against both lineages. The level of HMPV replication in chimpanzees was moderately higher, and infected animals developed mild colds. HMPV replicated the most efficiently in the respiratory tracts of African green monkeys, and the infected animals developed a high level of HMPV serum-neutralizing antibodies (1:500 to 1:1,000) effective against both lineages. Reciprocal cross-neutralization assays in which postinfection sera from all three primate species were used indicated that CAN75 and CAN83 are 64 to 99% related antigenically. HMPVinfected chimpanzees and African green monkeys were highly protected from challenge with the heterologous HMPV strain. Taken together, the results from hamsters and nonhuman primates support the conclusion that the two HMPV genetic lineages are highly related antigenically and are not distinct antigenic subtypes or subgroups as defined by reciprocal cross-neutralization in vitro.
We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen.
Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. H uman respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are enveloped, nonsegmented, negative-stranded RNA viruses of the family Paramyxoviridae. They are, respectively, the first and second leading viral causes of severe acute lower respiratory tract infections in infants and children worldwide. RSV alone is responsible for an estimated 34 million annual pediatric cases of lower respiratory tract illness worldwide, with Ͼ3.5 million hospitalizations and 66,000 to 199,000 pediatric deaths, which occur predominantly in the developing world (1). Licensed vaccines or effective antiviral drugs are not available for either RSV or HPIV3. Experimental inactivated (RSV and HPIV3) and subunit (RSV) vaccines have been linked to vaccine-induced enhanced disease in young children (inactivated RSV) and experimental animals (subunit RSV and inactivated HPIV3) (2-4). In contrast, disease enhancement is not observed with live attenuated RSV strains or vectors expressing RSV antigens (5-7), indicating that suitably attenuated candidates are safe for immunization of infants and young children.A chimeric recombinant bovine-human PIV3 (rB/HPIV3) ( Fig. 1) has been under development as a replication-competent intranasal pediatric vaccine vector. The PIV3 genome is a negative-sense RNA of 15.5 kb that contains six genes in the order 3=-N (nucleoprotein)-P (phosphoprotein)-M (matrix protein)-F (fusion glycoprotein)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.