A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of EI-LC-MS with SMB are listed and discussed.
Background: Workers on dredgers and lighters on rivers are potentially exposed to a variety of substances. Aims: To determine the internal load of heavy metals and arsenic as well as levels of cytogenetic markers in workers exposed to river silt aerosols. Methods: One hundred exposed workers were examined up to eight times within three years. Additionally, 100 control workers were studied once. Blood samples were analysed for lead, mercury, and cadmium. Additionally, micronuclei frequency and sister chromatid exchange (SCE) rates were determined. Urinary samples were analysed for cadmium, mercury, nickel, chromium, and arsenic. Information on potential confounders, such as smoking habits and consumption of fish were assessed. Results: Apart from some increased concentrations of mercury in blood (maximum 14.6 mg/l) and arsenic in urine (maximum 356.5 mg/l) all measurements were within reference values. None of the exposure and effect markers were found to be significantly increased in exposed workers compared to non-exposed controls. In multiple linear regression models, mercury levels in blood as well as the concentration of arsenic in urine were strongly related to fish consumption. Cadmium levels in blood as well as urinary cadmium concentrations were strongly related to smoking habits. After adjusting for smoking habits, SCE rates were associated with cadmium levels in blood. Conclusion: Increased exposure levels or enhanced levels of cytogenetic markers were not found in workers exposed to river silt aerosols. However, cadmium exposure in blood was related to SCE frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.