In gratings, incident light can couple strongly to plasmons propagating through periodically spaced slits in a metal film, resulting in a strong, resonant absorption whose frequency is determined by the nanostructure periodicity. When a grating is patterned on a silicon substrate, the absorption response can be combined with plasmon-induced hot electron photocurrent generation. This yields a photodetector with a strongly resonant, narrowband photocurrent response in the infrared, limited at low frequencies by the Schottky barrier, not the bandgap of silicon. Here we report a grating-based hot electron device with significantly larger photocurrent responsivity than previously reported antenna-based geometries. The grating geometry also enables more than three times narrower spectral response than observed for nanoantenna-based devices. This approach opens up the possibility of plasmonic sensors with direct electrical readout, such as an on-chip surface plasmon resonance detector driven at a single wavelength.
The use of surface plasmons, charge density oscillations of conduction electrons of metallic nanostructures, to boost the efficiency of light-harvesting devices through increased light-matter interactions could drastically alter how sunlight is converted into electricity or fuels. These excitations can decay directly into energetic electron–hole pairs, useful for photocurrent generation or photocatalysis. However, the mechanisms behind plasmonic carrier generation remain poorly understood. Here we use nanowire-based hot-carrier devices on a wide-bandgap semiconductor to show that plasmonic carrier generation is proportional to internal field-intensity enhancement and occurs independently of bulk absorption. We also show that plasmon-induced hot electrons have higher energies than carriers generated by direct excitation and that reducing the barrier height allows for the collection of carriers from plasmons and direct photoexcitation. Our results provide a route to increasing the efficiency of plasmonic hot-carrier devices, which could lead to more efficient devices for converting sunlight into usable energy.
When plasmonic nanostructures serve as the metallic counterpart of a metal-semiconductor Schottky interface, hot electrons due to plasmon decay are emitted across the Schottky barrier, generating measurable photocurrents in the semiconductor. When the plasmonic nanostructure is atop the semiconductor, only a small percentage of hot electrons are excited with a wavevector permitting transport across the Schottky barrier. Here we show that embedding plasmonic structures into the semiconductor substantially increases hot electron emission. Responsivities increase by 25× over planar diodes for embedding depths as small as 5 nm. The vertical Schottky barriers created by this geometry make the plasmon-induced hot electron process the dominant contributor to photocurrent in plasmonic nanostructure-diode-based devices.
Here, we report a new nanoantenna for surface-enhanced infrared absorption (SEIRA) detection, consisting of a fan-shaped Au structure positioned at a well-specified distance above a reflective plane with an intervening silica spacer layer. We examine how to optimize both the antenna dimensions and the spacer layer for optimal SEIRA enhancement of the C-H stretching mode. This tunable 3D geometry yields a theoretical SEIRA enhancement factor of 10(5), corresponding to the experimental detection of 20-200 zeptomoles of octadecanethiol, using a standard commercial FTIR spectrometer. Experimental studies illustrate the sensitivity of the observed SEIRA signal to the gap dimensions. The optimized antenna structure exhibits an order of magnitude greater SEIRA sensitivity than previous record-setting designs.
Chromatic devices such as flat panel displays could, in principle, be substantially improved by incorporating aluminum plasmonic nanostructures instead of conventional chromophores that are susceptible to photobleaching. In nanostructure form, aluminum is capable of producing colors that span the visible region of the spectrum while contributing exceptional robustness, low cost, and streamlined manufacturability compatible with semiconductor manufacturing technology. However, individual aluminum nanostructures alone lack the vivid chromaticity of currently available chromophores because of the strong damping of the aluminum plasmon resonance in the visible region of the spectrum. In recent work, we showed that pixels formed by periodic arrays of Al nanostructures yield far more vivid coloration than the individual nanostructures. This progress was achieved by exploiting far-field diffractive coupling, which significantly suppresses the scattering response on the long-wavelength side of plasmonic pixel resonances. In the present work, we show that by utilizing another collective coupling effect, Fano interference, it is possible to substantially narrow the short-wavelength side of the pixel spectral response. Together, these two complementary effects provide unprecedented control of plasmonic pixel spectral line shape, resulting in aluminum pixels with far more vivid, monochromatic coloration across the entire RGB color gamut than previously attainable. We further demonstrate that pixels designed in this manner can be used directly as switchable elements in liquid crystal displays and determine the minimum and optimal numbers of nanorods required in an array to achieve good color quality and intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.