Gray mold decay is a widespread postharvest disease in tomato that results from infection by the pathogen Botrytis cinerea, leading to huge economic losses. The objective of this study was to select the most effective antagonistic yeast to control tomato gray mold from six potential biocontrol agents and to investigate the possible control mechanism. The results showed that the yeast Wickerhamomyces anomalus was the most effective in inhibiting B. cinerea among the six strains both in vivo and in vitro on tomato, with a colony diameter of 11 mm, a decay diameter of 20 mm, and the lowest decay incidence (53%)—values significantly smaller and lower than the values recorded for the control group and the other yeasts. The efficacy of the control depended on the increase in yeast concentration, and the decay incidence and lesion diameter were reduced to 31%, 28% and 7 mm, 6 mm, respectively, when treated with 1 × 108 and 1 × 109 cells/mL W. anomalus. In addition, W. anomalus was able to rapidly colonize and stably multiply in tomato, occupying the space to control pathogen infection. W. anomalus was also able to motivate the defense mechanism of tomato with stimulation of defense-related enzymes PPO, POD, APX, and SOD and promotion of the content of total phenols and flavonoid compounds. All these results suggest that W. anomalus exhibited exceptional ability to control gray mold in tomato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.