BackgroundAccurately counting maize tassels is important for monitoring the growth status of maize plants. This tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating this task is required to meet the need of large-scale analysis of genotype and phenotype. In recent years, computer vision technologies have experienced a significant breakthrough due to the emergence of large-scale datasets and increased computational resources. Naturally image-based approaches have also received much attention in plant-related studies. Yet a fact is that most image-based systems for plant phenotyping are deployed under controlled laboratory environment. When transferring the application scenario to unconstrained in-field conditions, intrinsic and extrinsic variations in the wild pose great challenges for accurate counting of maize tassels, which goes beyond the ability of conventional image processing techniques. This calls for further robust computer vision approaches to address in-field variations.ResultsThis paper studies the in-field counting problem of maize tassels. To our knowledge, this is the first time that a plant-related counting problem is considered using computer vision technologies under unconstrained field-based environment. With 361 field images collected in four experimental fields across China between 2010 and 2015 and corresponding manually-labelled dotted annotations, a novel Maize Tassels Counting (MTC) dataset is created and will be released with this paper. To alleviate the in-field challenges, a deep convolutional neural network-based approach termed TasselNet is proposed. TasselNet can achieve good adaptability to in-field variations via modelling the local visual characteristics of field images and regressing the local counts of maize tassels. Extensive results on the MTC dataset demonstrate that TasselNet outperforms other state-of-the-art approaches by large margins and achieves the overall best counting performance, with a mean absolute error of 6.6 and a mean squared error of 9.6 averaged over 8 test sequences.ConclusionsTasselNet can achieve robust in-field counting of maize tassels with a relatively high degree of accuracy. Our experimental evaluations also suggest several good practices for practitioners working on maize-tassel-like counting problems. It is worth noting that, though the counting errors have been greatly reduced by TasselNet, in-field counting of maize tassels remains an open and unsolved problem.
This paper tackles the problem of training a deep convolutional neural network with both low-precision weights and low-bitwidth activations. Optimizing a low-precision network is very challenging since the training process can easily get trapped in a poor local minima, which results in substantial accuracy loss. To mitigate this problem, we propose three simple-yeteffective approaches to improve the network training. First, we propose to use a two-stage optimization strategy to progressively find good local minima. Specifically, we propose to first optimize a net with quantized weights and then quantized activations. This is in contrast to the traditional methods which optimize them simultaneously. Second, following a similar spirit of the first method, we propose another progressive optimization approach which progressively decreases the bit-width from high-precision to low-precision during the course of training. Third, we adopt a novel learning scheme to jointly train a full-precision model alongside the low-precision one. By doing so, the full-precision model provides hints to guide the low-precision model training. Extensive experiments on various datasets ( i.e., CIFAR-100 and ImageNet) show the effectiveness of the proposed methods. To highlight, using our methods to train a 4-bit precision network leads to no performance decrease in comparison with its full-precision counterpart with standard network architectures ( i.e., AlexNet and ResNet-50).
The first two authors contributed equally to this work. This work was in part supported by an ARC Future Fellowship to C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.