Aim: Vacuum-assisted closure (VAC) was primarily designed for the treatment of pressure ulcers or chronic, debilitating wounds. Recently, VAC has become an encouraging treatment modality for sternal wound infection after cardiac surgery, providing superior results to conventional treatment strategies.Methods: From November 2004 to September 2006, 34 patients, undergoing VAC therapy for sternal wound infection following cardiac surgery, were prospectively evaluated. Ten patients (29 %) were treated for superfi cial sternal wound infection and 24 (71 %) for deep sternal wound infection. The median age was 69.9 years (range 48 to 82) and the median BMI was 33.4 kg/m 2 (range 28 to 41). Twenty patients (59 %) were women and 19 patients (59 %) were diabetics. Owing to sternal wound infection complications, 16 patients (47 %) were readmitted to the department. VAC was used following the previous failure of the conventional treatment strategy in 7 patients (21 %).Results: Thirty-three patients (97 %) were treated successfully. One patient (3 %) died of multiple organ failure. The overall length of hospitalization was 34.6 days (range 9 to 62). The median number of dressing changes was 4.6 (range 3 to 10). The median VAC treatment time until surgical closure was 9.2 days (range 6 to 21 days). VAC therapy was solely used as a bridge to defi nite wound closure. Three patients (9 %) with chronic fi stula were re-admitted 1 to 6 months after VAC therapy.Conclusions: VAC therapy is a safe and reliable option in the treatment of sternal wound infection in cardiac surgery. VAC therapy should be considered an eff ective adjunct to conventional treatment modalities for the treatment of extensive and life-threatening wound infections following cardiac surgery, particularly in the presence of risk factors.
Exposure to solar radiation is a major cause of environmental human skin damage. The main constituent of solar UV light is UVA radiation (320-400 nm); however, the need for protection against UVA has been marginalized for a long time. As a result, there is still a lack of useful agents for UVA protection. In this study, the effect of silymarin (SM) and its main constituent silybin (SB) pre-treatment on UVA-stimulated damage to primary human dermal fibroblasts were carried out. The cells were pre-treated for 1 h with SB or SM and then were exposed to UVA light, using a solar simulator. The effect of SB and SM on reactive oxygen species (ROS) and glutathione (GSH) level, caspase-3 activity, single-strand breaks (SSB) formation and protein level of matrix metalloproteinase-1 (MMP-1), heme oxygenase-1 (HO-1), and heat shock protein (HSP70) was evaluated. Treatment with both SM and SB resulted in a reduction in UVA-stimulated ROS generation and SSB production, as well as in the prevention of GSH depletion, a decrease in the activation of caspase-3 and protein level of MMP-1. They also moderately increased HO-1 level and reduced HSP70 level. Our data showed that both SM and SB are non-phototoxic and have UVA-photoprotective potential and could be useful agents for UV-protective dermatological preparations.
Silymarin is a well-known standardized extract from the seeds of milk thistle (Silybum marianum L., Asteraceae) with a pleiotropic effect on human health, including skin anticancer potential. Detailed characterization of flavonolignans properties affecting interactions with human skin was of interest. The partition coefficients log Pow of main constitutive flavonolignans, taxifolin and their respective dehydro derivatives were determined by a High Performance Liquid Chromatography (HPLC) method and by mathematical (in silico) approaches in n-octanol/water and model lipid membranes. These parameters were compared with human skin intake ex vivo. The experimental log Pow values for individual diastereomers were estimated for the first time. The replacement of n-octanol with model lipid membranes in the theoretical lipophilicity estimation improved the prediction strength. During transdermal transport, all the studied compounds permeated the human skin ex vivo; none of them reached the acceptor liquid. Both experimental/theoretical tools allowed the studied polyphenols to be divided into two groups: low (taxifolin, silychristin, silydianin) vs. high (silybin, dehydrosilybin, isosilybin) lipophilicity and skin intake. In silico predictions can be usefully applied for estimating general lipophilicity trends, such as skin penetration or accumulation predictions. However, the theoretical models cannot yet provide the dermal delivery differences of compounds with very similar physico-chemical properties; e.g., between diastereomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.