The problem of estimating magnetic nanoparticle distributions from magnetorelaxometric measurements is addressed here. The objective of this work was to identify source grid parameters that provide a good condition for the related linear inverse problem. The parameters investigated here were the number of sources, the extension of the source grid, and the source direction. A new measure of the condition, the ratio between the largest and mean singular value of the lead field matrix, is proposed. Our results indicated that the source grids should be larger than the sensor area. The sources and, consequently, the magnetic excitation field, should be directed toward the Z-direction. For underdetermined linear inverse problems, such as in our application, the number of sources affects the condition to a relatively small degree. Overdetermined magnetostatic linear inverse problems, however, benefit from a reduction in the number of sources, which considerably improves the condition. The adapted source grids proposed here were used to estimate the magnetostatic dipole from simulated data; the L2-norm, residual, and distances between the estimated and simulated sources were significantly reduced.
Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics.
This article is aimed at proposing one very simple method for electric field and potential distribution determination in the case of large charges at electrodes surfaces when the electric field takes a very high value and induces corona discharges. The method also enables capacitance calculation as well as a dimension of the corona region. By using appropriate analogies, parameters of grounding systems driven by high currents can also be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.