Double-shell SnO@C hollow nanospheres were synthesized by a template method, and then the sulfur was loaded to form a cathode material of S/SnO@C composite. In Li-S batteries, it delivered a high initial specific capacity of 1473.1 mAh/g at a current density of 200 mA/g, and the capacity retention was even up to 95.7% over 100 cycles at 3200 mA/g, i.e., a capacity fade rate of only 0.043% per cycle. These good electrochemical performances should be attributed to the SnO@C hollow nanospheres. They can enhance the electronic conductivity by the outside carbon shell, and confine the lithium polysulfides by S-Sn-O and S-C chemical bonds to suppress the shuttle effect. Besides, the hollow nanospheres can readily accommodate the sulfur/sulfides to prevent the electrical/mechanical failure of the cathode, instead of their agglomeration on the external surface of SnO@C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.