For a secondary mass damper such as tuned liquid damper (TLD) or tuned liquid column damper (TLCD), whose moving mass is liquid, it is impossible to prefabricate the damper in a factory for the identification of dynamic properties. Also, it is not easy to prefabricate a concrete tuned mass damper (TMD), whose moving mass is made of concrete, in a factory. In this article, an identification method for finding dynamic properties of secondary mass dampers based on the fullscale field test is presented. Decoupled equations of motion are derived from a coupled equation of motion of building and damper. The decoupled equations of motion are then used for system identification using the response of the damper as an input and the response of the building as an output. The proposed method is applied to numerical examples and an actual TMD and TLCD installed in buildings.
In this study, a tuned liquid mass damper (TLMD) was proposed to reduce bidirectional responses of building structures, and its control performance was experimentally evaluated. The proposed TLMD with only one device body reduces bidirectional responses of building structures by behaving as a TMD and a TLCD in the weak and strong axial directions of a building fl oor plan, respectively. First, the control performance of a TLMD mounted on a scaledowned single-degree-of-freedom building model was experimentally evaluated by exciting this system with an actuator. Then, the real-time hybrid shaking table testing method (RTHSTTM) was performed to assess the control effi ciency of the total system by adopting the TLCD and the building model as the experimental and numerical parts, respectively. It was confi rmed by comparing uncontrolled and controlled testing results that the proposed TLMD can be applied to reduce the responses in both the weak and strong directions of building structures. Also, the results from RTHSTTM showed that the performance of TLMD-controlled building structure can be accurately evaluated by this method only using a TLMD as the experimental part.
This study proposes an effective steel frame modular system and evaluates the structural performance of its beam-column connection through experimental and analytical work. The new steel frame modular system utilizes the blind bolts, which allow free access to the structural members of the closed cross-section. In addition, the new modular system is designed such that the strength of its beam members is considerably lower than that of its column members to implement the strong column-weak beam concept. In order to investigate the effectiveness of the proposed modular beam-column connection, two types of specimens were designed and tested. One of the two specimens has four knee brace members to increase the bending stiffness of the connection, while the other does not have these components. The applied load versus displacement curves are plotted for the two specimens, and their failure modes are identified. Finally, a simplified analytical model for the modular beam-column connection is proposed, and its effectiveness is validated by performing its push-over analysis and comparing its results with the test results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.