Peptidyl acyloxymethyl ketones, previously established as potent inactivators of the lysosomal cysteine proteinase cathepsin B, were evaluated against smooth-muscle calpain, a member of the family of Ca(2+)-dependent cysteine proteinases. Only modest rates of time-dependent inhibition could be achieved, even with peptidyl affinity groups optimized for calpain and linked to a carboxylate leaving group of very low pKa [2,6-(CF3)2PhCOO-, pKa 0.58]. Selective inactivation of cathespin B versus calpain was consistently observed with this type of inhibitor. Examination of other potential inhibitors revealed a rank order of potency against calpain to be: peptidyl sulphonium methyl ketones > fluoromethyl ketones, diazomethyl ketones >> acyloxymethyl ketones, an order which differs sharply from that found for cathespin B.
Sulfonium methylketones, of structure Cbz-Phe-NH(CH2)nCOCH2S+ (CH3)2, n > 2, are specific and potent inactivators of transglutaminases. The length of the -(CH2)n-spacer moiety, n = 1-5, is a critical determinant for both the specificity and potency of the inactivator. The dipeptidyl analog Cbz-Phe-Gly-(CH2)nS+ (CH3)2, n = 1, is a more powerful inactivator of the thiol proteinase cathepsin B, k/K > 3 x 10(5) M-1 min-1, than of transglutaminases, ki(app)/Ki(app) < 1.5 x 10(4) M-1 min-1. In contrast, the gamma-aminobutyryl analog, n = 3, is a very potent transglutaminase inactivator with ki(app)/Ki(app) = 3.1 x 10(6) M-1 min-1, but does not inactivate cathepsin B. In cell studies, the gamma-aminobutyryl and epsilon-aminohexyl analogs inhibited the transglutaminase-mediated process of ionophore-induced cross-linked envelope formation by human malignant keratinocytes and the order of potency was related to that found for enzyme inhibition. The sulfonium methylketones, in equilibrium with the resonance stabilized ylides, are chemically inert towards glutathione under ambient conditions demonstrating the potential utility of this novel class of transglutaminase inhibitors for the study of enzyme inhibition in cellular environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.