We developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions. Nearly perfect capture of the AbMNCs and AbMNCs-Salmonella complexes was achieved under a high flow rate by stacking permanent magnets with spacers inside the cylindrical separator to maximize the magnetic force. The concentration of the bacteria in solution was determined using ATP luminescence measurements. The detection limit was better than 10 cfu/mL, and the overall assay time, including the binding, rinsing, and detection steps for a 10 mL sample took less than 3 min. To our knowledge, the 3D immunomagnetic flow assay described here provides the fastest high-sensitivity, high-capacity method for the detection of pathogenic bacteria.
Sensitive multiplex detection methods for foodborne pathogens are important in controlling food safety, and detection of genetic markers is accepted to be one of the best tools for sensitive detection. Although CE technology offers great potential in terms of sensitive multiplex detection, the necessary amplification is confined to markers sharing common primers such as the 16S rRNA gene. For precise and sensitive detection, pathogen-specific genes are optimal markers. Although multiplex ligation-dependent probe amplification (MLPA) is appropriate for amplification of specific markers, the requirement for stuffers, to ensure length-dependent separation on CE, is a major obstacle in detection of foodborne pathogens. In the present study, we developed stuffer-free MLPA using high-resolution CE-SSCP to sensitively detect ten foodborne pathogens. The probe set for MLPA prior to CE-SSCP analysis was designed for species-specific detection. After careful optimization of each MLPA step, to ensure that CE-SSCP analysis was informative, we found that all ten pathogens could be reliably identified; the limits of detection were 0.5-5 pg of genomic DNA, and more than 100-fold increase could be quantitatively determined. Thus, MLPA-CE-SSCP is a sensitive and reliable technique for pathogen detection.
Developing diagnostic tools based on the application of known disease/phenotype-associated copy number variations (CNVs) requires the capacity to measure CNVs in a multiplex format with sufficient reliability and methodological simplicity. In this study, we developed a reliable and user-friendly multiplex CNV detection method, termed stuffer-free MLPA-CE-SSCP, that combines a variation of multiplex ligation-dependent probe amplification (MLPA) with CE-SSCP. In this variation, MLPA probes were designed without the conventionally required stuffer sequences. To separate the similar-sized stuffer-free MLPA products, we adopted CE-SSCP rather than length-dependent conventional CE analysis. An examination of the genomic DNA from five cell lines known to vary in X-chromosome copy number (1-5) revealed that copy number determinations using stuffer-free MLPA-CE-SSCP were more accurate than those of conventional MLPA, and the CV of the measured copy numbers was significantly lower. Applying our system to measure the CNVs on autosomes between two HapMap individuals, we found that all peaks for CNV targets showed the expected copy number changes. Taken together, our results indicate that this new strategy can overcome the limitations of conventional MLPA, which are mainly related to long probe length and difficulties of probe preparation.
Rapid and sensitive detection of food-borne pathogens is critical for food safety from the viewpoint of both the public health professionals and the food industry. Conventional method is, however, known to be labor-intensive, time-consuming, and expensive due to the separate cultivation and biochemical assay. Many relevant technologies, such as flow cytometry, MALDI-MS, ESI-MS, DNA microarray, and CE, have been intensively developed to date. Among them, CE is considered to be the most efficient and reproducible because of low sample loss and simple automation. CE-based pathogen detection methods can be classified into three categories based on the separation targets: cell separation, nucleic-acid-based identification, and protein separation coupled with characterization. In this review, recent developments in each sphere of CE-based technology are discussed. Additionally, the critical features of each approach and necessary future technical improvements are also reviewed.
Crotamine is a peptide toxin found in the venom of the rattlesnake Crotalus durissus terrificus and has antiproliferative, antimicrobial, and antifungal activities. Herein, we show that crotamine dose-dependently induced macrophage phagocytic and cytostatic activity by the induction of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). Moreover, the crotamineinduced expression of iNOS and TNF-α is mediated through the phosphorylation of p38 and the NF-κB signaling cascade in macrophages. Notably, pretreatment with SB203580 (a p38-specific inhibitor) or BAY 11-7082 (an NF-κB inhibitor) inhibited crotamine-induced NO production and macrophage phagocytic and cytotoxic activity. Our results show for the first time that crotamine stimulates macrophage phagocytic and cytostatic activity by induction of NO and TNF-α via the p38 and NF-κB signaling pathways and suggest that crotamine may be a useful therapeutic agent for the treatment of inflammatory disease. [BMB Reports 2016; 49(3): 185-190]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.