Driven by continuing scaling of Moore's law, chip multiprocessors and systems-on-a-chip are expected to grow the core count from dozens today to hundreds in the near future. Scalability of on-chip interconnect topologies is critical to meeting these demands. In this work, we seek to develop a better understanding of how network topologies scale with regard to cost, performance, and energy considering the advantages and limitations afforded on a die. Our contributions are three-fold. First, we propose a new topology, called Multidrop Express Channels (MECS), that uses a one-to-many communication model enabling a high degree of connectivity in a bandwidth-efficient manner. In a 64-terminal network, MECS enjoys a 9% latency advantage over other topologies at low network loads, which extends to over 20% in a 256-terminal network. Second, we demonstrate that partitioning the available wires among multiple networks and channels enables new opportunities for trading-off performance, area, and energy-efficiency that depend on the partitioning scheme. Third, we introduce Generalized Express Cubes -a framework for expressing the space of on-chip interconnects -and demonstrate how existing and proposed topologies can be mapped to it.
Scale-out datacenters mandate high per-server throughput to get the maximum benefit from the large TCO investment. Emerging applications (e.g., data serving and web search) that run in these datacenters operate on vast datasets that are not accommodated by on-die caches of existing server chips. Large caches reduce the die area available for cores and lower performance through long access latency when instructions are fetched. Performance on scale-out workloads is maximized through a modestly-sized last-level cache that captures the instruction footprint at the lowest possible access latency. In this work, we introduce a methodology for designing scalable and efficient scale-out server processors. Based on a metric of performance-density, we facilitate the design of optimal multi-core configurations, called pods. Each pod is a complete server that tightly couples a number of cores to a small last-level cache using a fast interconnect. Replicating the pod to fill the die area yields processors which have optimal performance density, leading to maximum per-chip throughput. Moreover, as each pod is a stand-alone server, scale-out processors avoid the expense of global (i.e., interpod) interconnect and coherence. These features synergistically maximize throughput, lower design complexity, and improve technology scalability. In 20nm technology, scaleout chips improve throughput by 5x-6.5x over conventional and by 1.6x-1.9x over emerging tiled organizations.
Emerging datacenter applications operate on vast datasets that are kept in DRAM to minimize latency. The large number of servers needed to accommodate this massive memory footprint requires frequent server-to-server communication in applications such as key-value stores and graph-based applications that rely on large irregular data structures. The fine-grained nature of the accesses is a poor match to commodity networking technologies, including RDMA, which incur delays of 10-1000x over local DRAM operations.We introduce Scale-Out NUMA (soNUMA) -an architecture, programming model, and communication protocol for low-latency, distributed in-memory processing. soNUMA layers an RDMA-inspired programming model directly on top of a NUMA memory fabric via a stateless messaging protocol. To facilitate interactions between the application, OS, and the fabric, soNUMA relies on the remote memory controller -a new architecturally-exposed hardware block integrated into the node's local coherence hierarchy. Our results based on cycle-accurate full-system simulation show that soNUMA performs remote reads at latencies that are within 4x of local DRAM, can fully utilize the available memory bandwidth, and can issue up to 10M remote memory operations per second per core.
In-memory databases rely on pointer-intensive data structures to quickly locate data in memory. A single lookup operation in such data structures often exhibits long-latency memory stalls due to dependent pointer dereferences. Hiding the memory latency by launching additional memory accesses for other lookups is an effective way of improving performance of pointer-chasing codes (e.g., hash table probes, tree traversals). The ability to exploit such inter-lookup parallelism is beyond the reach of modern out-of-order cores due to the limited size of their instruction window. Instead, recent work has proposed software prefetching techniques that exploit inter-lookup parallelism by arranging a set of independent lookups into a group or a pipeline, and navigate their respective pointer chains in a synchronized fashion. While these techniques work well for highly regular access patterns, they break down in the face of irregularity across lookups. Such irregularity includes variable-length pointer chains, early exit, and read/write dependencies.This work introduces Asynchronous Memory Access Chaining (AMAC), a new approach for exploiting interlookup parallelism to hide the memory access latency. AMAC achieves high dynamism in dealing with irregularity across lookups by maintaining the state of each lookup separately from that of other lookups. This feature enables AMAC to initiate a new lookup as soon as any of the in-flight lookups complete. In contrast, the static arrangement of lookups into a group or pipeline in existing techniques precludes such adaptivity. Our results show that AMAC matches or outperforms state-of-the-art prefetching techniques on regular access patterns, while delivering up to 2.3x higher performance under irregular data structure lookups. AMAC fully utilizes the available microarchitectural resources, generating the maximum number of memory accesses allowed by hardware in both single-and multi-threaded execution modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.